

Спонтанен процес – отделяне на енергия без външно въздействие!

α-разпада минимизира вътрешната енергията на дъщерната с-ма!

 $E_{i} - E_{f} > 0$

Енергетично условие
в покой
$$\rightarrow \frac{A}{Z}X_{N} \rightarrow \frac{A-4}{Z-2}Y_{N-2} + \alpha$$

 $m_{X}c^{2} = m_{Y}c^{2} + T_{Y} + m_{\alpha}c^{2} + T_{\alpha}$ $(m_{X} - m_{Y} - m_{\alpha})c^{2} = T_{Y} + T_{\alpha}$
 $Q = \sum_{i} M_{i}(A,Z) - \sum_{f} M_{f}(A,Z)$ - енергията отделена при процеса
 $Q = T_{Y} + T_{\alpha}$ $Q > 0$ екзотермични
 $Q < 0$ ендотермични

 $Q = m_X - m_Y - m_\alpha > 0$ $m_X - m_Y > m_\alpha$ Спонтанен разпад се наблюдава само за Q > 0

$$m_{X} - m_{Y} >$$

$$m = \Delta m + Ac^{2}$$

$$Q = \Delta m_{X} + Ac^{2} - \Delta m_{Y} - (A - 4)c^{2} - \Delta m_{\alpha} - 4c^{2} > 0$$

$$Q = \Delta m_{X} - \Delta m_{Y} - \Delta m_{\alpha} > 0$$

$$m(N,Z) = Nm_n + Zm_p - B(N,Z) / c^2$$

Q = B(2,2) + B(N-2,Z-2) - B(N,Z) $B_{\alpha}(2,2) > B_X(N,Z) - B_Y(N-2,Z-2)$
Защо ⁴He?

Енергетично условие

$^{232}_{92}U_{140}$ ($\Delta m = 34.61 \text{ MeV}, B/A = 7.6 \text{ MeV}$) $\rightarrow X (\Delta m, B/A)$	+ $\mathbf{x} (\Delta \mathbf{m}, \mathbf{B} / \mathbf{A})$
p_{1}^{231} Pa ₁₄₀ (33.43 MeV, 7.62 MeV) + $\frac{1}{1}$ H ₀ (7.29 MeV, 0)	Q = -6.11 MeV
${}^{231}_{92}$ U ₁₃₉ (33.81 MeV, 7.61 MeV) + ${}^{1}_{0}$ H ₁ (8.07 MeV, 0)	Q = -7.27 MeV
$^{230}_{91}$ Pa ₁₃₉ (32.17 MeV, 7.62 MeV) + $^{2}_{1}$ H ₁ (13.14 MeV, 1.11 MeV) ζ	Q = -10.7 MeV
$^{229}_{90}$ Th ₁₃₉ (29.59 MeV, 7.63 MeV) + $^{3}_{2}$ He ₁ (14.93 MeV, 2.57 MeV)	Q = -9.91 MeV
$^{228}_{90}$ Th ₁₃₈ (26.77 MeV, 7.65 MeV) + $^{4}_{2}$ He ₂ (2.42 MeV, 7.07 MeV)	2 = + 5.42 MeV
$^{227}_{90}$ Th ₁₃₇ (25.81 MeV, 7.64 MeV) + $^{5}_{2}$ He ₃ (11.39 MeV, 5.48 MeV)	Q = -2.59 MeV
$^{225}_{89}$ Ac ₁₃₆ (21.64 MeV, 7.67 MeV) + $^{7}_{3}$ Li ₄ (14.91 MeV, 5.61 MeV)	Q = -1.94 MeV
$\lambda^{24}_{\rm Ne} / \lambda_{\alpha} \sim 10^{-12} /$	
$^{224}_{88}$ Ra ₁₃₆ (18.83 MeV, 7.68 MeV) + $^{8}_{4}$ Be ₄ (4.94 MeV, 7.06 MeV) Q	= + 10.84 MeV
$\frac{220}{86}$ Rn ₁₃₄ (10.61 MeV 7.17 MeV) + $\frac{12}{6}$ C ₆ (0 MeV, 7.68 MeV)	Q = + 24 MeV
$^{208}_{82}$ Pb ₁₂₆ (-21.75 MeV, 7.87 MeV) + $^{24}_{10}$ Ne ₁₄ (-5.95 MeV, 7.99 MeV) ς	Q = +62.31 MeV

α - относително леки, силно свързани (+ голяма вероятност за разпад) ⇒ излъчването на α води до отделяне на максимално количество кинетична енергия

Откатна енергия на дъщерното ядро

в покой $\longrightarrow {}^{A}_{Z}X_{N} \longrightarrow {}^{A-4}_{Z-2}Y_{N-2} + \alpha$

 $p_{\alpha} = p_Y \qquad T = \frac{p^2}{2m}$

 $Q = T_v + T_{\alpha}$

$$m_{\alpha}T_{\alpha} = m_{Y}T_{Y}$$

 $Q \sim 5 \text{ MeV} \Rightarrow T_v \sim 100 \text{ keV}$

Закон на Geiger-Nuttall

Големи Q фактори ⇒ кратки времена на живот!

Голяма разлика в B(Z,N) Матерното ядро е Голям Q фактор ⇒ матерното и дъщерното ⇒ по-нестабилно, т.е. ядро по-лесно се разпада

Квантово описание на *α*-разпада

Тунелиране през ядрено-кулонов бариер (Gamow&Gurney 1928)

α-разпад

Централен потенциал

$$\psi(r,\theta,\varphi) = R(r)Y(\theta,\varphi)$$
$$-\frac{\hbar^2}{2m} \left(\frac{d^2R}{dr^2} + \frac{2}{r}\frac{dR}{dr}\right) + \left[V(r) + \frac{\hbar^2l(l+1)}{2mr^2}\right]R = ER$$

Приближение: $l = 0 \Rightarrow$ едномерна задача за тунелиране

$$\psi_{1}(x) = A.e^{ik_{1}x} + B.e^{-ik_{1}x}$$

$$k_{1} = \sqrt{2mE / \hbar^{2}}$$

$$(2) \qquad \forall_{0} \qquad k_{3} = \sqrt{2mE / \hbar^{2}} \qquad 0 \le x \le 0$$

$$(3) \qquad \forall_{0} \qquad x = a'$$

$$\psi_{2}(x) = C.e^{k_{2}x} + D.e^{-k_{2}x} \qquad k_{2} = \sqrt{2m(V_{0} - E) / \hbar^{2}}$$

$$T = \frac{|F|^2}{|A|^2} = \frac{1}{1 + \frac{1}{4} \frac{V_0^2}{E(V_0 - E)} \sinh^2(k_2 a)}$$

- енергия на α -частицата E = Q (\approx 6 MeV)
- маса на α-частицата m = 4
- начало на потенциала $a = R_Y + R_\alpha = 1.2(200^{1/3} + 4^{1/3}) \approx 9$ fm
- височина на бариера:

$$B = V_c(r = a) = \frac{e^2}{4\pi\varepsilon_0} \frac{zZ}{a} = 1.44 (\text{MeVfm}) \frac{2 \times 88}{9 \text{ fm}} \approx 28 \text{ MeV}$$

Приближение: $V_0 = \frac{1}{2} (B + Q)$ $T \approx \frac{1}{1 + \sinh^2(k_2 a')}$

• край на бариера:
$$\frac{e^2}{4\pi\varepsilon_0} \frac{zZ'}{b} = Q$$
 $b = \frac{e^2}{4\pi\varepsilon_0} \frac{zZ'}{Q} \approx 42 \text{ fm}$

$$T \approx \frac{1}{1 + \sinh^2(k_2 a')}$$

Приближение:
$$\frac{b-a}{2} = \frac{42-9}{2}$$
 fm ≈ 16 fm

•
$$k_2 = \sqrt{2m(V_0 - E)/\hbar^2} = \sqrt{2m(0.5(B + Q) - Q)/\hbar^2} = \sqrt{(m/\hbar^2)(B - Q)} =$$

 $\approx \sqrt{((4.0026 \times 931.5 \text{ MeV})/(197 \text{ MeVfm})^2)22 \text{ MeV}} = 1.45 \text{ fm}^{-1}$

$$k_{2} \times \frac{b-a}{2} >> 1 \quad \sinh\left(k_{2} \frac{b-a}{2}\right) \approx \frac{e^{k_{2} \frac{b-a}{2}}}{2} \quad T \approx \frac{1}{1 + \frac{e^{2k_{2} \cdot (b-a)/2}}{4}} \approx e^{-2k_{2} \cdot \frac{(b-a)}{2}}$$
$$T = \frac{1}{4} = 1.7 \times 10^{-21} \quad \text{Tr} (Q = 5 \text{ MeV}) = 7 \times 10^{-28}$$
$$Q = 5 \text{ MeV} \quad b = \frac{e^{2}}{4\pi\varepsilon_{0}} \frac{zZ'}{Q} \approx 51 \text{ fm} \quad k_{2} = \sqrt{(m/\hbar^{2})(B-Q)} = 1.49 \text{ fm}^{-1}$$

Какво направихме дотук?

Резултати

$t_{1/2} = 0.6$	$593 \frac{a}{c} \sqrt{\frac{mc^2}{2(V_0 + Q)}}$	$Exp \left\{ 2 \sqrt{\frac{2 \text{ mc}^2}{(\hbar \text{c})^2 \text{ Q}}} \right\}$	$\frac{zZ'e^2}{4\pi\epsilon_0}\left(\frac{\pi}{2}-2\sqrt{\frac{Q}{B}}\right)\right\}$
²²⁰ Th	Q=8.95 MeV	t _{1/2} ^{exp} = 10 ⁻⁵ s	t _{1/2} th =3.3 10 ⁻⁷ s
²²² Th	Q=8.13 MeV	t _{1/2} ^{exp} = 2.8 10 ⁻³ s	t _{1/2} th =6.3 10 ⁻⁵ s
²²⁴ Th	Q=7.31 MeV	t _{1/2} ^{exp} = 1.04 s	t _{1/2} th =3.3 10 ⁻² s
²²⁶ Th	Q=6.45 MeV	t _{1/2} ^{exp} = 1845 s	t _{1/2} th =6.0 10 ¹ s
²²⁸ Th	Q=5.52 MeV	t _{1/2} ^{exp} = 6 10 ⁷ s	t _{1/2} th =2.4 10 ⁶ s
²³⁰ Th	Q=4.77 MeV	t _{1/2} ^{exp} = 2.5 10 ¹² s	t _{1/2} th =1.0 10 ¹¹ s
²³² Th	Q=4.08 MeV	t _{1/2} ^{exp} = 4.4 10 ¹⁷ s	t _{1/2} th =2.6 10 ¹⁶ s

Защо: • не отчетохме вероятността за формиране на α-частица

• не отчетохме възможността за различни състояния в началната и крайната с-ма

• не отчетохме влиянието на ъгловия момент

• приехме, че ядрото е сферично 4-5% промяна \Rightarrow фактор 5

Ho: ${}^{220}\text{Th} \rightarrow {}^{12}\text{C} + {}^{208}\text{Pb} (Q=32.1 \text{ MeV}) \implies t_{1/2} = 2.3 \ 10^6 \text{ s}$

Четност и спин при *а*-разпад

Разпада може да води до множество нива в дъщерното ядро E_x , I^{π} Q = T_{α} - E_x

- спин-четност на основното състояние на ⁴He: 2 протона в $1s_{1/2} \Rightarrow j^{\pi} = 0^+$ $I^{\pi} = 0^+$ 2 неутрона в $1s_{1/2} \Rightarrow j^{\pi} = 0^+$
- изменение на спина и четността при разпада:

Приложение на правилата на отбор

Идентификация на свръх-тежки елементи

⁷⁰Zn + ²⁰⁸Pb → ²⁷⁷112 + 1n

α-разпада и ядрената структура

