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PREFACE

This work began as a collaborative attempt with David Halliday to revise and
update the second edition of his classic text Introductory Nuclear Physics (New
York: Wiley, 1955). As the project evolved, it became clear that, owing to other
commitments, Professor Halliday would be able to devote only limited time to
the project and he therefore volunteered to remove himself from active participa-
tion, a proposal to which I reluctantly and regretfully agreed. He was kind
enough to sign over to me the rights to use the material from the previous edition.
I first encountered Halliday’s text as an undergraduate physics major, and it
was perhaps my first real introduction to nuclear physics. I recall being impressed
by its clarity and its readability, and in preparing this new version, I have tried to
preserve these elements, which are among the strengths of the previous work.

Audience This text is written primarily for an undergraduate audience, but
could be used in introductory graduate surveys of nuclear physics as well. It can
be used specifically for physics majors as part of a survey of modern physics, but
could (with an appropriate selection of material) serve as an introductory course
for other areas of nuclear science and technology, including nuclear chemistry,
nuclear engineering, radiation biology, and nuclear medicine.

Background It is expected that students have a previous background in quan-
tum physics, either at the introductory level [such as the author’s text Modern
Physics (New York: Wiley, 1983)] or at a more advanced, but still undergraduate
level. (A brief summary of the needed quantum background is given in Chapter
2.) The text is therefore designed in a “two-track” mode, so that the material that
requires the advanced work in quantum mechanics, for instance, transition
probabilities or matrix elements, can be separated from the rest of the text by
skipping those sections that require such a background. This can be done without
interrupting the logical flow of the discussion.

Mathematical background at the level of differential equations should be
sufficient for most applications.

Emphasis There are two features that distinguish the present book. The first is
the emphasis on breadth. The presentation of a broad selection of material
permits the instructor to tailor a curriculum to meet the needs of any particular
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vi PREFACE

student audience. The complete text is somewhat short for a full-year course, but
too long for a course of quarter or semester length. The instructor is therefore
able to select material that will provide students with the broadest possible
introduction to the field of nuclear physics, consistent with the time available for
the course.

The second feature is the unabashedly experimental and phenomenological
emphasis and orientation of the presentation. The discussions of decay and
reaction phenomena are accompanied with examples of experimental studies
from the literature. These examples have been carefully selected following
searches for papers that present data in the clearest possible manner and that
relate most directly to the matter under discussion. These original experiments
are discussed, often with accompanying diagrams of apparatus, and results with
uncertainties are given, all in the attempt to convince students that progress in
nuclear physics sprang not exclusively from the forehead of Fermi, but instead
has been painstakingly won in the laboratory. At the same time, the rationale and
motivation for the experiments are discussed, and their contributions to the
theory are emphasized. -
Organization The book is divided into four units: Basic Nuclear Structure,
Nuclear Decay and Radioactivity, Nuclear Reactions, and Extensions and Appli-
cations. The first unit presents background material on nuclear sizes and shapes,
discusses the two-nucleon problem, and presents an introduction to nuclear
models. These latter two topics can be skipped without loss of continuity in an
abbreviated course. The second unit on decay and radioactivity presents the
traditional topics, with new material included to bring nuclear decay nearly into
the current era (the recently discovered “heavy” decay modes, such as C,
double B decay, B-delayed nucleon emission, Mossbauer effect, and so on). The
third unit surveys nuclear reactions, including fission and fusion and their
applications. The final unit deals with topics that fall only loosely under the
nuclear physics classification, including hyperfine interactions, particle physics,
nuclear astrophysics, and general applications including nuclear medicine. The
emphasis here is on the overlap with other physics and nonphysics specialties,
including atomic physics, high-energy physics, cosmology, chemistry, and medi-
cine. Much of this material, particularly in Chapters 18 and 19, represents
accomplishments of the last couple of years and therefore, as in all such volatile
areas, may be outdated before the book is published. Even if this should occur,
however, the instructor is presented with a golden opportunity to make important
points about progress in science. Chapter 20 features applications involving
similarly recent developments, such as PET scans. The material in this last unit
builds to a considerable degree on the previous material; it would be very unwise,
for example, to attempt the material on meson physics or particle physics without
a firm grounding in nuclear reactions.

Sequence Chapters or sections that can be omitted without loss of continuity in
an abbreviated reading are indicated with asterisks (*) in the table of contents.
An introductory short course in nuclear physics could be based on Chapters 1, 2,
3,6, 8,9, 10, and 11, which cover the fundamental aspects of nuclear decay and
reactions, but little of nuclear structure. Fission and fusion can be added from
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Chapters 13 and 14. Detectors and accelerators can be included with material
selected from Chapters 7 and 15.

The last unit (Chapters 16 to 20) deals with applications and does not
necessarily follow Chapter 15 in sequence. In fact, most of this material could be
incorporated at any time after Chapter 11 (Nuclear Reactions). Chapter 16,
covering spins and moments, could even be moved into the first unit after
Chapter 3. Chapter 19 (Nuclear Astrophysics) requires background material on
fission and fusion from Chapters 13 and 14.

Most of the text can be understood with only a minimal background in
quantum mechanics. Chapters or sections that require a greater background (but
still at the undergraduate level) are indicated in the table of contents with a
dagger (7).

Many undergraduates, in my experience, struggle with even the most basic
aspects of the quantum theory of angular momentum, and more abstract con-
cepts, such as isospin, can present them with serious difficulties. For this reason,
the introduction of isospin is delayed until it is absolutely necessary in Chapter
11 (Nuclear Reactions) where references to its application to beta and gamma
decays are given to show its importance to those cases as well. No attempt is
made to use isospin coupling theory to calculate amplitudes or cross sections. In
an abbreviated coverage, it is therefore possible to omit completely any discus-
sion of isospin, but it absolutely must be included before attempting Chapters 17
and 18 on meson and particle physics.

Notation Standard notation has been adopted, which unfortunately overworks
the symbol T to represent kinetic energy, temperature, and isospin. The particle
physicist’s choice of I for isospin and J for nuclear spin leaves no obvious
alternative for the total electronic angular momentum. Therefore, I has been
reserved for the total nuclear angular momentum, J for the total electronic
angular momentum, and T for the isospin. To be consistent, the same scheme is
extended into the particle physics regime in Chapters 17 and 18, even though it
may be contrary to the generally accepted notation in particle physics. The
lowercase j refers to the total angular momentum of a single nucleon or atomic
electron.

References No attempt has been made to produce an historically accurate set of
references to original work. This omission is done partly out of my insecurity
about assuming the role of historian of science and partly out of the conviction
that references tend to clutter, rather than illuminate, textbooks that are aimed
largely at undergraduates. Historical discussions have been kept to a minimum,
although major insights are identified with their sources. The history of nuclear
physics, which so closely accompanies the revolutions wrought in twentieth-cen-
tury physics by relativity and quantum theory, is a fascinating study in itself, and
I encourage serious students to pursue it. In stark contrast to modern works, the
classic papers are surprisingly readable. Many references to these early papers
can be found in Halliday’s book or in the collection by Robert T. Beyer,
Foundations of Nuclear Physics (New York: Dover, 1949), which contains reprints
of 13 pivotal papers and a classified bibliography of essentially every nuclear
physics publication up to 1947.



viii PREFACE

Each chapter in this textbook is followed with a list of references for further
reading, where more detailed or extensive treatments can be found. Included in
the lists are review papers as well as popular-level books and articles.

Several of the end-of-chapter problems require use of systematic tabulations of
nuclear properties, for which the student should have ready access to the current
edition of the Table of Isotopes or to a complete collection of the Nuclear Data
Sheets.
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I am grateful for the assistance of the following professional colleagues and
friends: David Arnett, Carroll Bingham, Merle Bunker, H. K. Carter, Charles W.
Drake, W. A. Fowler, Roger J. Hanson, Andrew Klein, Elliot J. Krane, Rubin H.
Landau, Victor A. Madsen, Harvey Marshak, David K. McDaniels, Frank A.
Rickey, Kandula S. R. Sastry, Larry Schecter, E. Brooks Shera, Richard R.
Silbar, Paul Simms, Rolf M. Steffen, Gary Steigman, Morton M. Sternheim,
Albert W. Stetz, and Ken Toth. They made many wise and valuable suggestions,
and I thank them for their efforts. Many of the problems were checked by Milton
Sagen and Paula Sonawala. Hundreds of original illustrations were requested of
and generously supplied by nuclear scientists from throughout the world. Kathy
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Robert McConnin, copy editors Virginia Dunn and Deborah Herbert, and
production supervisor Charlene Cassimire. Finally, without the kind support and
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1

BASIC CONCEPTS

Whether we date the origin of nuclear physics from Becquerel’s discovery of
radioactivity in 1896 or Rutherford’s hypothesis of the existence of the nucleus in
1911, it is clear that experimental and theoretical studies in nuclear physics have
played a prominent role in the development of twentieth century physics. As a
result of these studies, a chronology of which is given on the inside of the front
cover of this book, we have today a reasonably good understanding of the
properties of nuclei and of the structure that is responsible for those properties.
Furthermore, techniques of nuclear physics have important applications in other
areas, including atomic and solid-state physics. Laboratory experiments in nuclear
physics have been applied to the understanding of an incredible variety of
problems, from the interactions of quarks (the most fundamental particles of
which matter is composed), to the processes that occurred during the early
evolution of the universe just after the Big Bang. Today physicians use techniques
learned from nuclear physics experiments to perform diagnosis and therapy in
areas deep inside the body without recourse to surgery; but other techniques
learned from nuclear physics experiments are used to build fearsome weapons of
mass destruction, whose proliferation is a constant threat to our future. No other
field of science comes readily to mind in which theory encompasses so broad a
spectrum, from the most microscopic to the cosmic, nor is there another field in
which direct applications of basic research contain the potential for the ultimate
limits of good and evil.

Nuclear physics lacks a coherent theoretical formulation that would permit us
to analyze and interpret all phenomena in a fundamental way; atomic physics
has such a formulation in quantum electrodynamics, which permits calculations
of some observable quantities to more than six significant figures. As a result, we
must discuss nuclear physics in a phenomenological way, using a different
formulation to describe each different type of phenomenon, such as a decay, 8
decay, direct reactions, or fission. Within each type, our ability to interpret
experimental results and predict new results is relatively complete, yet the
methods and formulation that apply to one phenomenon often are not applicable
to another. In place of a single unifying theory there are islands of coherent
knowledge in a sea of seemingly uncorrelated observations. Some of the most
fundamental problems of nuclear physics, such as the exact nature of the forces
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that hold the nucleus together, are yet unsolved. In recent years, much progress
has been made toward understanding the basic force between the quarks that are
the ultimate constituents of matter, and indeed attempts have been made at
applying this knowledge to nuclei, but these efforts have thus far not contributed
to the clarification of nuclear properties.

We therefore adopt in this text the phenomenological approach, discussing
each type of measurement, the theoretical formulation used in its analysis, and
the insight into nuclear structure gained from its interpretation. We begin with a
summary of the basic aspects of nuclear theory, and then turn to the experiments
that contribute to our knowledge of structure, first radioactive decay and then
nuclear reactions. Finally, we discuss special topics that contribute to micro-
scopic nuclear structure, the relationship of nuclear physics to other disciplines,
and applications to other areas of research and technology.

1.1 HISTORY AND OVERVIEW

The search for the fundamental nature of matter had its beginnings in the
speculations of the early Greek philosophers; in particular, Democritus in the
fourth century B.C. believed that each kind of material could be subdivided into
smaller and smaller bits until one reached the very limit beyond which no further
division was possible. This atom of material, invisible to the naked eye, was to
Democritus the basic constituent particle of matter. For the next 2400 years, this
idea remained only a speculation, until investigators in the early nineteenth
century applied the methods of experimental science to this problem and from
their studies obtained the evidence needed to raise the idea of atomism to the
level of a full-fledged scientific theory. Today, with our tendency toward the
specialization and compartmentalization of science, we would probably classify
these early scientists (Dalton, Avogadro, Faraday) as chemists. Once the chemists
had elucidated the kinds of atoms, the rules governing their combinations in
matter, and their systematic classification (Mendeleev’s periodic table), it was
only natural that the next step would be a study of the fundamental properties of
individual atoms of the various elements, an activity that we would today classify
as atomic physics. These studies led to the discovery in 1896 by Becquerel of the
radioactivity of certain species of atoms and to the further identification of
radioactive substances by the Curies in 1898. Rutherford next took up the study
of these radiations and their properties; once he had achieved an understanding
of the nature of the radiations, he turned them around and used them as probes
of the atoms themselves. In the process he proposed in 1911 the existence of the
atomic nucleus, the confirmation of which (through the painstaking experiments
of Geiger and Marsden) provided a new branch of science, nuclear physics,
dedicated to studying matter at its most fundamental level. Investigations into
the properties of the nucleus have continued from Rutherford’s time to the
present. In the 1940s and 1950s, it was discovered that there was yet another level
of structure even more elementary and fundamental than the nucleus. Studies of
the particles that contribute to the structure at this level are today carried out in
the realm of elementary particle (or high energy) physics.

Thus nuclear physics can be regarded as the descendent of chemistry and
atomic physics and in turn the progenitor of particle physics. Although nuclear
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physics no longer occupies center stage in the search for the ultimate components
of matter, experiments with nuclei continue to contribute to the understanding of
basic interactions. Investigation of nuclear properties and the laws governing the
structure of nuclei is an active and productive area of physical research in its own
right, and practical applications, such as smoke detectors, cardiac pacemakers,
and medical imaging devices, have become common. Thus nuclear physics has in
reality three aspects: probing the fundamental particles and their interactions,
classifying and interpreting the properties of nuclei, and providing technological
advances that benefit society.

1.2 SOME INTRODUCTORY TERMINOLOGY

A nuclear species is characterized by the total amount of positive charge in the
nucleus and by its total number of mass units. The net nuclear charge is equal to
+ Ze, where Z is the atomic number and e is the magnitude of the electronic
charge. The fundamental positively charged particle in the nucleus is the proton,
which is the nucleus of the simplest atom, hydrogen. A nucleus of atomic number
Z therefore contains Z protons, and an electrically neutral atom therefore must
contain Z negatively charged electrons. Since the mass of the electrons is
negligible compared with the proton mass (m,, = 2000m.), the electron can often
be ignored in discussions of the mass of an atom. The mass number of a nuclear
species, indicated by the symbol A, is the integer nearest to the ratio between the
nuclear mass and the fundamental mass unit, defined so that the proton has a
mass of nearly one unit. (We will discuss mass units in more detail in Chapter 3.)
For nearly all nuclei, 4 is greater than Z, in most cases by a factor of two or
more. Thus there must be other massive components in the nucleus. Before 1932,
it was believed that the nucleus contained A protons, in order to provide the
proper mass, along with 4 — Z nuclear electrons to give a net positive charge of
Ze. However, the presence of electrons within the nucleus is unsatisfactory for
several reasons:

1. The nuclear electrons would need to be bound to the protons by a very
strong force, stronger even than the Coulomb force. Yet no evidence for this
strong force exists between protons and atomic electrons.

2. If we were to confine electrons in a region of space as small as a nucleus
(Ax ~ 10~ m), the uncertainty principle would require that these electrons
have a momentum distribution with a range Ap ~ i/Ax = 20 MeV /c.
Electrons that are emitted from the nucleus in radioactive B8 decay have
energies generally less than 1 MeV; never do we see decay electrons with
20 MeV energies. Thus the existence of 20 MeV electrons in the nucleus is
not confirmed by observation.

3. The total intrinsic angular momentum (spin) of nuclei for which 4 — Z is
odd would disagree with observed values if A protons and A — Z electrons
were present in the nucleus. Consider the nucleus of deuterium (A4 = 2,
Z = 1), which according to the proton-electron hypothesis would contain 2
protons and 1 electron. The proton and electron each have intrinsic angular
momentum (spin) of 1, and the quantum mechanical rules for adding spins
of particles would require that these three spins of 3 combine to a total of
either 2 or 1. Yet the observed spin of the deuterium nucleus is 1.
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4. Nuclei containing unpaired electrons would be expected to have magnetic
dipole moments far greater than those observed. If a single electron were
present in a deuterium nucleus, for example, we would expect the nucleus to
have a magnetic dipole moment about the same size as that of an electron,
but the observed magnetic moment of the deuterium nucleus is about 535 of
the electron’s magnetic moment.

Of course it is possible to invent all sorts of ad hoc reasons for the above
arguments to be wrong, but the necessity for doing so was eliminated in 1932
when the neutron was discovered by Chadwick. The neutron is electrically neutral
and has a mass about equal to the proton mass (actually about 0.1% larger). Thus
a nucleus with Z protons and A4 — Z neutrons has the proper total mass and
charge, without the need to introduce nuclear electrons. When we wish to
indicate a specific nuclear species, or nuclide, we generally use the form £X,,
where X is the chemical symbol and N is the neutron number, A — Z. The
symbols for some nuclides are H,, 235U, 4, 55Fe,,. The chemical symbol and the
atomic number Z are redundant—every H nucleus has Z = 1, every U nucleus
has Z = 92, and so on. It is therefore not necessary to write Z. It is also not
necessary to write N, since we can always find it from 4 — Z. Thus 2%U is a
perfectly valid way to indicate that particular nuclide; a glance at the periodic
table tells us that U has Z =92, and therefore 23®U has 238 — 92 = 146
neutrons. You may find the symbols for nuclides written sometimes with Z and
N, and sometimes without them. When we are trying to balance Z and N in a
decay or reaction process, it is convenient to have them written down; at other
times it is cumbersome and unnecessary to write them.

Neutrons and protons are the two members of the family of nucleons. When we
wish simply to discuss nuclear particles without reference to whether they are
protons or neutrons, we use the term nucleons. Thus a nucleus of mass number A
contains A nucleons.

When we analyze samples of many naturally occurring elements, we find that
nuclides with a given atomic number can have several different mass numbers;
that is, a nuclide with Z protons can have a variety of different neutron numbers.
Nuclides with the same proton number but different neutron numbers are called
isotopes; for example, the element chlorine has two isotopes that are stable
against radioactive decay, **Cl and *’Cl. It also has many other unstable isotopes
that are artificially produced in nuclear reactions; these are the radioactive
isotopes (or radioisotopes) of CL.

It is often convenient to refer to a sequence of nuclides with the same N but
different Z; these are called isotones. The stable isotones with N = 1 are ?H and
3He. Nuclides with the same mass number A are known as isobars; thus stable
*He and radioactive *H are isobars.

1.3 NUCLEAR PROPERTIES

Once we have identified a nuclide, we can then set about to measure its
properties, among which (to be discussed later in this text) are mass, radius,
relative abundance (for stable nuclides), decay modes and half-lives (for radioac-
tive nuclides), reaction modes and cross sections, spin, magnetic dipole and
electric quadrupole moments, and excited states. Thus far we have identified
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Figure 1.1 Stable nuclei are shown in dark shading and known radioactive
nuclei are in light shading.

nuclides with 108 different atomic numbers (0 to 107); counting all the different
isotopes, the total number of nuclides is well over 1000, and the number of
carefully studied new nuclides is growing rapidly owing to new accelerators
dedicated to studying the isotopes far from their stable isobars. Figure 1.1 shows
a representation of the stable and known radioactive nuclides.

As one might expect, cataloging all of the measured properties of these many
nuclides is a formidable task. An equally formidable task is the retrieval of that
information: if we require the best current experimental value of the decay modes
of an isotope or the spin and magnetic moment of another, where do we look?

Nuclear physicists generally publish the results of their investigations in
journals that are read by other nuclear physicists; in this way, researchers from
distant laboratories are aware of one another’s activities and can exchange ideas.
Some of the more common journals in which to find such communications are
Physical Review, Section C (abbreviated Phys. Rev. C), Physical Review Letters
(Phys. Rev. Lett.), Physics Letters, Section B (Phys. Lett. B), Nuclear Physics,
Section A (Nucl. Phys. A), Zeitschrift fiir Physik, Section A (Z. Phys. A), and
Journal of Physics, Section G (J. Phys. G). These journals are generally published
monthly, and by reading them (or by scanning the table of contents), we can find
out about the results of different researchers. Many college and university
libraries subscribe to these journals, and the study of nuclear physics is often
aided by browsing through a selection of current research papers.

Unfortunately, browsing through current journals usually does not help us to
locate the specific nuclear physics information we are seeking, unless we happen
to stumble across an article on that topic. For this reason, there are many sources
of compiled nuclear physics information that summarize nuclear properties and
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give references to the literature where the original publication may be consulted.
A one-volume summary of the properties of all known nuclides is the Table of
Isotopes, edited by M. Lederer and V. Shirley (New York: Wiley, 1978). A copy
of this indispensible work is owned by every nuclear physicist. A more current
updating of nuclear data can be found in the Nuclear Data Sheets, which not
only publish regular updated collections of information for each set of isobars,
but also give an annual summary of all published papers in nuclear physics,
classified by nuclide. This information is published in journal form and is also
carried by many libraries. It is therefore a relatively easy process to check the
recently published work concerning a certain nuclide.

Two other review works are the Atomic Data and Nuclear Data Tables, which
regularly produces compilations of nuclear properties (for example, 8 or y
transition rates or fission energies), and the Annual Review of Nuclear and Particle
Science (formerly called the Annual Review of Nuclear Science), which each year
publishes a collection of review papers on current topics in nuclear and particle
physics.

1.4 UNITS AND DIMENSIONS

In nuclear physics we encounter lengths of the order of 107'* m, which is one
femtometer (fm). This unit is colloquially known as one fermi, in honor of the
pioneer Italian-American nuclear physicist, Enrico Fermi. Nuclear sizes range
from about 1 fm for a single nucleon to about 7 fm for the heaviest nuclei.

The time scale of nuclear phenomena has an enormous range. Some nuclei,
such as *He or ®Be, break apart in times of the order of 10~%° s. Many nuclear
reactions take place on this time scale, which is roughly the length of time that
the reacting nuclei are within range of each other’s nuclear force. Electromagnetic
(y) decays of nuclei occur generally within lifetimes of the order of 107° s
(nanosecond, ns) to 10712 s (picosecond, ps), but many decays occur with much
shorter or longer lifetimes. @ and B decays occur with even longer lifetimes, often
minutes or hours, but sometimes thousands or even millions of years.

Nuclear energies are conveniently measured in millions of electron-volts (MeV),
where 1 eV = 1.602 X 107 !° J is the energy gained by a single unit of electronic
charge when accelerated through a potential difference of one volt. Typical 8 and
y decay energies are in the range of 1 MeV, and low-energy nuclear reactions take
place with kinetic energies of order 10 MeV. Such energies are far smaller than
the nuclear rest energies, and so we are justified in using nonrelativistic formulas
for energy and momentum of the nucleons, but S-decay electrons must be treated
relativistically.

Nuclear masses are measured in terms of the unified atomic mass unit, u,
defined such that the mass of an atom of *2C is exactly 12 u. Thus the nucleons
have masses of approximately 1 u. In analyzing nuclear decays and reactions, we
generally work with mass energies rather than with the masses themselves. The
conversion factor is 1 u = 931.502 MeV, so the nucleons have mass energies of
approximately 1000 MeV. The conversion of mass to energy is of course done
using the fundamental result from special relativity, E = mc?; thus we are free to
work either with masses or energies at our convenience, and in these units
¢? = 931.502 MeV /u.
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REFERENCES FOR ADDITIONAL READING

The following comprehensive nuclear physics texts provide explanations or
formulations alternative to those of this book. Those at the introductory level are
at about the same level as the present text; higher-level texts often form the basis
for more advanced graduate courses in nuclear physics. No attempt has been
made to produce a complete list of reference works; rather, these are the ones the
author has found most useful in preparing this book.

These “classic” texts now mostly outdated but still containing much useful
material are interesting for gaining historical perspective: R. D. Evans, The
Atomic Nucleus (New York: McGraw-Hill, 1955) (For 20 years, since his
graduate-student days, the most frequently used book on the author’s shelves. Its
binding has all but deteriorated, but its completeness and clarity remain.); David
Halliday, Introductory Nuclear Physics (New York: Wiley, 1955); 1. Kaplan,
Nuclear Physics (Reading, MA: Addison-Wesley, 1955).

Introductory texts complementary to this text are: W. E. Burcham, Nuclear
Physics: An Introduction (London: Longman, 1973); B. L. Cohen, Concepts of
Nuclear Physics (New York: McGraw-Hill, 1971); Harald A. Enge, Introduction
to Nuclear Physics (Reading, MA: Addison-Wesley, 1966); Robert A. Howard,
Nuclear Physics (Belmont, CA: Wadsworth, 1963); Walter E. Meyerhof, Ele-
ments of Nuclear Physics (New York: McGraw-Hill, 1967); Haro Von Buttlar,
Nuclear Physics: An Introduction (New York: Academic Press, 1968).

Intermediate texts, covering much the same material as the present one but
distinguished primarily by a more rigorous use of quantum mechanics, are: M. G.
Bowler, Nuclear Physics (Oxford: Pergamon, 1973); Emilio Segré, Nuclei and
Particles (Reading, MA: W. A. Benjamin, 1977).

Advanced texts, primarily for graduate courses, but still containing much
material of a more basic nature, are: Hans Frauenfelder and Ernest M. Henley,
Subatomic Physics (Englewood Cliffs, NJ: Prentice-Hall, 1974); M. A. Preston,
Physics of the Nucleus (Reading, MA: Addison-Wesley, 1962).

Advanced works, more monographs than texts in nature, are: John M. Blatt
and Victor F. Weisskopf, Theoretical Nuclear Physics (New York: Wiley, 1952);
A. Bohr and B. R. Mottelson, Nuclear Structure (New York: W. A. Benjamin,
1969); A. deShalit and H. Feshbach, Theoretical Nuclear Physics (New York:
Wiley, 1974).
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ELEMENTS OF
QUANTUM MECHANICS

Nucleons in a nucleus do not behave like classical particles, colliding like billiard
balls. Instead, the wave behavior of the nucleons determines the properties of the
nucleus, and to analyze this behavior requires that we use the mathematical
techniques of quantum mechanics.

From a variety of scattering experiments, we know that the nucleons in a
nucleus are in motion with kinetic energies of the order of 10 MeV. This energy is
small compared with the nucleon rest energy (about 1000 MeV), and so we can
with confidence use nonrelativistic quantum mechanics.

To give a complete introduction to quantum mechanics would require a text
larger than the present one. In this chapter, we summarize some of the important
concepts that we will need later in this book. We assume a previous introduction
to the concepts of modern physics and a familiarity with some of the early
experiments that could not be understood using classical physics; these experi-
ments include thermal (blackbody) radiation, Compton scattering, and the photo-
electric effect. At the end of this chapter is a list of several introductory modern
physics texts for review. Included in the list are more advanced quantum physics
texts, which contain more complete and rigorous discussions of the topics
summarized in this chapter.

2.1 QUANTUM BEHAVIOR

Quantum mechanics is a mathematical formulation that enables us to calculate
the wave behavior of material particles. It is not at all a priori evident that such
behavior should occur, but the suggestion follows by analogy with the quantum
behavior of light. Before 1900, light was generally believed to be a wave
phenomenon, but the work of Planck in 1900 (analyzing blackbody radiation)
and Einstein in 1905 (analyzing the photoelectric effect) showed that it was also
necessary to consider light as if its energy were delivered not smoothly and
continuously as a wave but instead in concentrated bundles or “quanta,” in effect
“particles of light.”

The analogy between matter and light was made in 1924 by de Broglie,
drawing on the previous work of Einstein and Compton. If light, which we
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generally regard as a wave phenomenon, also has particle aspects, then (so de
Broglie argued) might not matter, which we generally regard as composed of
particles, also have a wave aspect? Again proceeding by analogy with light, de
Broglie postulated that associated with a “particle” moving with momentum p is
a “wave” of wavelength A = h/p where h is Planck’s constant. The wavelength
defined in this way is generally called the de Broglie wavelength. Experimental
confirmation of de Broglie’s hypothesis soon followed in 1927 through the
experiments of Thomson and of Davisson and Germer. They showed that
electrons (particles) were diffracted like waves with the de Broglie wavelength.

The de Broglie theory was successful in these instances, but it is incomplete
and unsatisfying for several reasons. For one, we seldom see particles with a
unique momentum p; if the momentum of a particle changes, such as when it is
acted upon by an external force, its wavelength must change, but the de Broglie
relationship lacks the capability to enable computation of the dynamical behavior
of the waves. For this we need a more complete mathematical theory, which was
supplied by Schrédinger in 1925 and which we review in Section 2 of this
chapter. A second objection to the de Broglie theory is its reliance on classical
concepts and terminology. “Particle” and “wave” are mutually exclusive sorts of
behaviors, but the de Broglie relationship involves classical particles with uniquely
defined momenta and classical waves with uniquely defined wavelengths. A
classical particle has a definite position in space. Now, according to de Broglie,
that localized particle is to be represented by a pure wave that extends throughout
all space and has no beginning, end, or easily identifiable “position.”

The solution to this dilemma requires us to discard the classical idea of
“particle” when we enter the domain of quantum physics. The size of a classical
particle is the same in every experiment we may do; the “size” of a quantum
particle varies with the experiment we perform. Quantum physics forces us to
sacrifice the objective reality of a concept such as “size” and instead to substitute
an operational definition that depends on the experiment that is being done. Thus
an electron may have a certain size in one experiment and a very different size in
another. Only through this coupling of the observing system and the observed
object can we define observations in quantum physics. A particle, then, is
localized within some region of space of dimension Ax. It is likely to be found in
that region and unlikely to be found elsewhere. The dimension Ax of an electron
is determined by the kind of experiment we do—it may be the dimension of a
block of material if we are studying electrical conduction in solids, or the
dimension of a single atom if we are studying atomic physics, or of a nucleus if
we are studying B8 decay. The wave that characterizes the particle has large
amplitude in the region Ax and small amplitude elsewhere. The single de Broglie
wave corresponding to the unique momentum component p, had a large ampli-
tude everywhere; thus a definite momentum (wavelength) corresponds to a
completely unlocalized particle. To localize the particle, we must add (superpose)
other wavelengths corresponding to other momenta p,, so that we make the
resultant wave small outside the region Ax. We improve our knowledge of Ax at
the expense of our knowledge of p,. The very act of confining the particle to Ax
destroys the precision of our knowledge of p, and introduces a range of values Ap,.
If we try to make a simultaneous determination of x and p,, our result will show
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that each is uncertain by the respective amounts Ax and Ap,, which are related
by the Heisenberg uncertainty relationship

N | >

AxAp, > (2.1)

with similar expressions for the y and z components. (The symbol #, read as
“h-bar,” is h/27 where h is Planck’s constant.) The key word here is “simulta-
neous”—we can indeed measure x with arbitrarily small uncertainty (Ax = 0) if
we are willing to sacrifice all simultaneous knowledge of the momentum of the
particle. Having made that determination, we could then make an arbitrarily
precise measurement of the new momentum (Ap, = 0), which would simulta-
neously destroy our previous precise knowledge of its position.

We describe the particle by a “wave packet,” a collection of waves, repre-
senting a range of momenta Ap, around p,, with an amplitude that is reasonably
large only within the region Ax about x. A particle is localized in a region of
space defined by its wave packet; the wave packet contains all of the available
information about the particle. Whenever we use the term “particle” we really
mean “wave packet”; although we often speak of electrons or nucleons as if they
had an independent existence, our knowledge of them is limited by the uncer-
tainty relationship. to the information contained in the wave packet that describes
their particular situation.

These arguments about uncertainty hold for other kinds of measurements as
well. The energy E of a system is related to the frequency » of its de Broglie wave
according to E = hv. To determine E precisely, we must observe for a sufficiently
long time interval At so that we can determine » precisely. The uncertainty
relationship in this case is

AEAt > (2.2)

N | oS

If a system lives for a time At, we cannot determine its energy except to within an
uncertainty AE. The energy of a system that is absolutely stable against decay
can be measured with arbitrarily small uncertainty; for all decaying systems there
is an uncertainty in energy, commonly called the energy “width.”

A third uncertainty relationship involves the angular momentum. Classically,
we can determine all three components ¢, ¢, ¢, of the angular momentum
vector Z In quantum mechanics, when we try to improve our knowledge of one
component, it is at the expense of our knowledge of the other two components.
Let us choose to measure the z component, and let the location of the projection
of £ in the xy plane be characterized by the azimuthal angle ¢. Then

h
AZ, A¢ > 5 (2.3)

If we know ¢, exactly, then we know nothing at all about ¢. We can think of £ as
rotating or precessing about the z axis, keeping £, fixed but allowing all possible
¢, and £, so that ¢ is completely uncertain.
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2.2 PRINCIPLES OF QUANTUM MECHANICS

The mathematical aspects of nonrelativistic quantum mechanics are determined
by solutions to the Schrodinger equation. In one dimension, the time-independent
Schrodinger equation for a particle of mass m with potential energy V(x) is

S V) () = B4 () (4)

where (x) is the Schrodinger wave function. The wave function is the mathe-
matical description of the wave packet. In general, this equation will have
solutions only for certain values of the energy E; these values, which usually
result from applying boundary conditions to {/(x), are known as the energy
eigenvalues. The complete solution, including the time dependence, is

W(x,t)=q¢(x)e ™! (2.5)
where w = E/h.

An important condition on the wave function is that ¥ and its first derivative
dy/dx must be continuous across any boundary; in fact, the same situation
applies to classical waves. Whenever there is a boundary between two media, let
us say at x = a, we must have

lim [y(a+¢) —y(a—e)] =0 (2.6a)

[y dy -
3%[(};)x=a+s - (E)x=aej| - O (26b)

It is permitted to violate condition 2.6b if there is an infinite discontinuity in
V(x); however, condition 2.6a must always be true.

Another condition on i, which originates from the interpretation of probabil-
ity density to be discussed below, is that ¢ must remain finite. Any solution for
the Schrodinger equation that allows ¥ to become infinite must be discarded.

Knowledge of the wave function ¥(x, ¢) for a system enables us to calculate
many properties of the system. For example, the probability to find the particle
(the wave packet) between x and x + dx 1s

P(x)dx =¥*(x,t)¥(x,t)dx (2.7)

where ¥* is the complex conjugate of ¥. The quantity ¥* ¥ is known as the
probability density. The probability to find the particle between the limits x; and
X, is the integral of all the infinitesimal probabilities:

P= ¥ v (2.8)

and

The total probability to find the particle must be 1:
f°° Y dx = 1 (2.9)
This condition is known as the normalization condition and in effect it determines

any multiplicative constants included in ¥. All physically meaningful wave
functions must be properly normalized.
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Any function of x, f(x), can be evaluated for this quantum mechanical system.
The values that we measure for f(x) are determined by the probability density,
and the average value of f(x) is determined by finding the contribution to the
average for each value of x:

(fy= [¥*f¥ax (2.10)

Average values computed in this way are called quantum mechanical expectation
values. ‘

We must be a bit careful how we interpret these expectation values. Quantum
mechanics deals with statistical outcomes, and many of our calculations are really
statistical averages. If we prepare a large number of identical systems and
measure f(x) for each of them, the average of these measurements will be { f).
One of the unsatisfying aspects of quantum theory is its inability to predict with
certainty the outcome of an experiment; all we can do is predict the statistical
average of a large number of measurements.

Often we must compute the average values of quantities that are not simple
functions of x. For example, how can we compute {p )? Since p, is not a
function of x, we cannot use Equation 2.10 for this calculation. The solution to
this difficulty comes from the mathematics of quantum theory. Corresponding to
each classical variable, there is a quantum mechanical operator. An operator is a
symbol that directs us to perform a mathematical operation, such as exp or sin or
d/dx. We adopt the convention that the operator acts only on the variable or
function immediately to its right, unless we indicate otherwise by grouping
functions in parentheses. This convention means that it is very important to
remember the form of Equation 2.10; the operator is “sandwiched” between ¥*
and ¥, and operates only on ¥. Two of the most common operators encountered
in quantum mechanics are the momentum operator, p_= —ihd/dx and the
energy, E = ihd/dt. Notice that the first term on the left of the Schrodinger
equation 2.4 is just p2/2m, which we can regard as the kinetic energy operator.
Notice also that the operator E applied to ¥(x, ¢t) in Equation 2.5 gives the
number E multiplying ¥(x, 1).

We can now evaluate the expectation value of the x component of the
momentum:

(px>=/‘I’*(—ih%)\Ifdx

] *a‘I,d 2.11
——lhf\I’ o (2.11)

One very important feature emerges from these calculations: when we take the
complex conjugate of ¥ as given by Equation 2.5, the time-dependent factor
becomes e*'“’, and therefore the time dependence cancels from Equations
2.7-2.11. None of the observable properties of the system depend on the time.
Such conditions are known for obvious reasons as stationary states; a system in a
stationary state stays in that state for all times and all of the dynamical variables
are constants of the motion. This is of course an idealization—no system lives
forever, but many systems can be regarded as being in states that are approxi-
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mately stationary. Thus an atom can make a transition from one “stationary”
excited state to another “stationary” state.
Associated with the wave function ¥ is the particle current density j:
) h . v v ov*
7= ax ax

2mi
This quantity is analogous to an electric current, in that it gives the number of
particles per second passing any point x.

In three dimensions, the form of the Schrédinger equation depends on the
coordinate system in which we choose to work. In Cartesian coordinates, the
potential energy is a function of (x, y, z) and the Schrédinger equation is

hz P th e 24/ d 2'4’

E/l— W + :9;7 + —827) + V(xays z)"l’(x’y,z) =E¢('x’ y’ Z) (2‘13)

(2.12)

The complete time-dependent solution is again

V(x,y,z,t) =y¢(x, y,z) e " (2.14)

The probability density ¥* ¥ now gives the probability per unit volume; the
probability to find the particle in the volume element dv = dxdydz at x, y, z is

Pdyv=¥*¥dv (2.15)

To find the total probability in some volume ¥, we must do a triple integral over
x, y, and z. All of the other properties discussed above for the one-dimensional
system can easily be extended to the three-dimensional system.

Since nuclei are approximately spherical, the Cartesian coordinate system is
not the most appropriate one. Instead, we must work in spherical polar coordi-
nates (r, 8, ¢), which are shown in Figure 2.1. In this case the Schrodinger
equation is

W oy 24y 1 4 ay L
_—— —— —_—— —_— —_— + —
2m|9r2 T Far  rising ao(sm ao) r2sintg 3¢?

Figure 2.1 Spherical polar coordinate system, showing the relationship to Carte-
sian coordinates.
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All of the previous considerations apply in this case as well, with the volume
element

dv =r?sinfdrdfdo (2.17)

The following two sections illustrate the application of these principles, first
with the mathematically simpler one-dimensional problems and then with the
more physical three-dimensional problems.

2.3 PROBLEMS IN ONE DIMENSION

The Free Particle

For this case, no forces act and we take V(x) = 0 everywhere. We can then
rewrite Equation 2.4 as

d%y 2mE
gl (2.18)
The solution to this differential equation can be written
¥(x) = A’ sin kx + B’ cos kx (2.19)
or, equivalently
Y(x) =Ae** + Be ¥~ (2.20)
where k? = 2mE /h? and where 4 and B (or A’ and B’) are constants.
The time-dependent wave function is
V(x,1) = Aetkx=wD 4 Beilhkx+en (2.21)

The first term represents a wave traveling in the positive x direction, while the
second term represents a wave traveling in the negative x direction. The intensi-
ties of these waves are given by the squares of the respective amplitudes, |4 |2
and |B|?. Since there are no boundary conditions, there are no restrictions on the
energy E; all values of E give solutions to the equation. The normalization
condition 2.9 cannot be applied in this case, because integrals of sin? or cos? do
not converge in x = —oo to +co. Instead, we use a different normalization
system for such constant potentials. Suppose we have a source such as an
accelerator located at x = — oo, emitting particles at a rate I particles per
second, with momentum p = hk in the positive x direction. Since the particles
are traveling in the positive x direction, we can set B to zero—the intensity of
the wave representing particles traveling in the negative x direction must vanish
if there are no particles traveling in that direction. The particle current is,
according to Equation 2.12,

hk
Jj= ;IAI2 (2.22)

which must be equal to the current of I particles per second emitted by the
source. Thus we can take 4 = \/ml/hk .
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Step Potential, E > V,
The potential is
V(x)=0 x<0
=V, x>0 (2.23)

where 7, > 0. Let us call x < 0 region 1 and x > 0 region 2. Then in region 1,
the Schrodinger equation is identical with Equation 2.18 and the solutions ¢, are
given by Equation 2.20 with k = k; = {2mE/h*. In region 2, the Schrodinger
equation is

d*y, 2m(E - V,)

i 2 ¥, (2.24)
Since E > V,,, we can write the solution as
Y, = Ce'*2* + De ik (2.25)

where k, = \2m(E — V,)/h>.
Applying the boundary conditions at x = 0 gives

A+B=C+D (2.26a)
from Equation 2.6a, and
k(A - B) =k,(C— D) (2.26b)

from Equation 2.6b.

Let’s assume that particles are incident on the step from a source at x = — oo.
Then the A term in y, represents the incident wave (the wave in x < 0 traveling
toward the step at x = 0), the B term in i, represents the reflected wave (the
wave in x < 0 traveling back toward x = — o), and the C term in , represents
the transmitted wave (the wave in x > 0 traveling away from x = 0). The D term
cannot represent any part of this problem because there is no way for a wave to
be moving toward the origin in region 2, and so we eliminate this term by setting
D to zero. Solving Equations 2.26a and 2.26b, we have

1—k,/k,

B=4—=Z— 2.27

1+ ky/k, (2.27)

C=4 2 (2.28)
I :

The reflection coefficient R is defined as the current in the reflected wave divided
by the incident current:

_ Jreflected

R = - (2.29)
Jincident
and using Equation 2.22 we find
B> [1—ky/k\
R 20 /Ky (230
4] L+ ky/ky

The transmission coefficient T is similarly defined as the fraction of the incident
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——9-1 A =2nm/k, l(—
) @f,mgk - e—
ER v N T ——
ey = 2m /by —>]
B I
x=0

Figure 2.2 The wave function of a particle of energy E encountering a step of
height \, for the case E > V,. The de Broglie wavelength changes from \, to \,
when the particle crosses the step, but 4 and dy /dx are continuous at x = 0.

current that is transmitted past the boundary:

Jitransmitted

T = Jransmied (2.31)
Jincident
and thus
k, |CI? 4k,/k,

= 2.3
ki A2 (1 + ky/k,) 2.32)

Notice that R + T =1, as expected. The resulting solution is illustrated in
Figure 2.2.

This is a simple example of a scattering problem. In Chapter 4 we show how
these concepts can be extended to three dimensions and applied to nucleon-
nucleon scattering problems.

Step Potential, E < V,

In this case, the potential is still given by Equation 2.23, and the solution for
region 1 (x < 0) is identical with the previous calculation. In region 2, the
Schrodinger equation gives

d%, 2m

ey F(VO—E)% (2.33)
which has the solution

Y, = Cek2* + De k¥ (2.34)

where k, = \/Zm(VO — E)/h*. Note that for constant potentials, the solutions
are either oscillatory like Equation 2.19 or 2.20 when E > V¥, or exponential like
Equation 2.34 when E < V. Although the mathematical forms may be different
for nonconstant potentials V(x), the general behavior is preserved: oscillatory
(though not necessarily sinusoidal) when E > V(x) and exponential when E <
V(x).

This solution, Equation 2.34, must be valid for the entire range x > 0. Since
the first term would become infinite for x = oo, we must set C = 0 to keep the
wave function finite. The D term in ¢, illustrates an important difference
between classical and quantum physics, the penetration of the wave function into
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Figure 2.3 The wave function of a particle of energy E encountering a step of
height V,, for the case E < V. The wave function decreases exponentially in the
classically forbidden region, where the classical kinetic energy would be negative.
At x = 0, ¥ and dy/dx are continuous.

the classically forbidden region. All (classical) particles are reflected at the
boundary; the quantum mechanical wave packet, on the other hand, can penetrate
a short distance into the forbidden region. The (classical) particle is never directly
observed in that region; since E < V{, the kinetic energy would be negative in
region 2. The solution is illustrated in Figure 2.3

Barrier Potential, E > |,
The potential is
V(x)=0 x <0
=V, O0<x<a (2.35)
=0 x> a
In the three regions 1, 2, and 3, the solutions are
¢1 = Aeiklx + Be—iklx
Y, = Ce'*2* + De k¥ (2.36)
4]3 — Feik3x + Ge~ik3x
where k, = k, = {2mE/h? and k, = {2m(E — V) /h?.
Using the continuity conditions at x = 0 and at x = a, and assuming again
that particles are incident from x = —oo (so that G can be set to zero), after

considerable algebraic manipulation we can find the transmission coefficient
T = |F*/14]*

1
T = 2.37
. 1 Ve (2.37)

_+__—
4 E(E-V,)

sin’ k,a
The solution is illustrated in Figure 2.4.
Barrier Potential, E < V

For this case, the y, and ¢, solutions are as above, but y, becomes

Y, = Ce*?* + De k2~ (2.38)
where now k, = 2m(V, — E)/h*. Because region 2 extends only from x = 0
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Figure 2.4 The wave function of a particle of energy E > \, encountering a
barrier potential. The particle is incident from the left. The wave undergoes reflec-
tions at both boundaries, and the transmitted wave emerges with smaller amplitude.

to x = a, the question of an exponential solution going to infinity does not arise,
so we cannot set C or D to zero.

Again, applying the boundary conditions at x = 0 and x = @ permits the
solution for the transmission coefficient:

1 |
T= 2.39
1 . Vo inh? k )
+ S
4E(V0—E)Sm ,0

Classically, we would expect 7= 0—the particle is not permitted to enter the
forbidden region where it would have negative kinetic energy. The quantum wave
can penetrate the barrier and give a nonzero probability to find the particle
beyond the barrier. The solution is illustrated in Figure 2.5.

This phenomenon of barrier penetration or quantum mechanical tunneling has
important applications in nuclear physics, especially in the theory of a decay,
which we discuss in Chapter 8.

Figure 2.5 The wave function of a particle of energy £ <V, encountering a
barrier potential (the particle would be incident from the left in the figure). The
wavelength is the same on both sides of the barrier, but the amplitude beyond the
barrier is much less than the original amplitude. The particle can never be ob-
served, inside the barrier (where it would have negative kinetic energy) but it can
be observed beyond the barrier.
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The Infinite Well
The potential is (see Figure 2.6)

V(ix)=00 x<0, x>a
=0 0<x<a (2.40)

That is, the particle is trapped between x = 0 and x = a. The walls at x = 0 and
x = a are absolutely impenetrable; thus the particle is never outside the well and
¢ = 0 for x < 0 and for x > a. Inside the well, the Schrodinger equation has the
form of Equation 2.18, and we will choose a solution in the form of Equation
2.19:

Y = Asin kx + B cos kx (2.41)

The continuity condition on ¢ at x = 0 gives y/(0) = 0, which is true only for
B = 0. At x = a, the continuity condition on v gives

Asinka =0 (2.42)

The solution 4 = 0 is not acceptable, for that would give ¢ = 0 everywhere.
Thus sin ka = 0, or

ka = nn n=1,2,3,... (2.43)
and
h2k? h2xm?
= = 2
Ey 2m 2ma’" (244)

- —
ey |7

/

—O0—
Figure 2.6 A particle moves freely in the one-dimensional region 0 < x < a butis
excluded completely from x < 0 and x > a. A bead sliding without friction on a wire
and bouncing elastically from the walls is a simple physical example.
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Here the energy is quantized—only certain values of the energy are permitted.
The energy spectrum is illustrated in Figure 2.7. These states are bound states, in
which the potential confines the particle to a certain region of space.

The corresponding wave functions are

2 nmwx
Y,= 1 — sin — (2.45)
a a

Excited E = 16Ep

states

4

E =9Ey

Ground
state

Figure 2.7 The permitted energy levels of the one-dimensional infinite square
well. The wave function for each level is shown by the solid curve, and the shaded
region gives the probability density for each level. The energy £, is #%n2 / 2ma?.
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where the constant 4 has been evaluated using Equation 2.9. The probability
densities |y|> of some of the lower states are illustrated in Figure 2.7.

The Finite Potential Well
For this case we assume the well has depth V}, between +a/2 and —a/2:
V(x) =V, |x| > a/2
=0 |x| <a/2 (2.46)
We look for bound-state solutions, with E < ¥V,. The solutions are
¢, = Aek* + Be k* x < —a/2
Y, =Cel*+ Demtke*  —g/2 <x<a/2 (2.47)
Yy = Fel* + Ge > x>a/2

where k, = \2m(V, — E)/h* and k, = y2mE/h*. To keep the wave function

finite in region 1 when x = — 0, we must have B = 0, and to keep it finite in
region 3 for x - + o0, we require F = 0.

Applying the continuity conditions at x = —a/2 and at x = +a/2, we find
the following two relationships:

k,a
k, tan T =k, (2.48a)
or
k,a
—k, cot - = k, (2.48b)

These transcendental equations cannot be solved directly. They can be solved
numerically on a computer, or graphically. The graphical solutions are easiest if
we rewrite Equations 2.48 in the following form:

atana = (P> — o*)'? (2.49a)
—acota = (P*— a2)1/2 (2.49p)

where a = k,a/2 and P = (mV,a*/2h*)!/%. The right side of these equations
defines a circle of radius P, while the left side gives a tangentlike function with
several discrete branches. The solutions are determined by the points where the
circle intersects the tangent function, as shown in Figure 2.8. Therefore, the
number of solutions is determined by the radius P, and thus by the depth V, of the
well. (Contrast this with the infinite well, which had an infinite number of bound
states.) For example, when P < x/2, there is only one bound state. For #/2 <
P < 7 there are two bound states. Conversely, if we studied a system of this sort
and found only one bound state, we could deduce some limits on the depth of the
well. As we will discuss in Chapter 4, a similar technique allows us to estimate the
depth of the nuclear potential, because the deuteron, the simplest two-nucleon
bound system, has only one bound state.
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atana -acota

Vo = 36(2#2/ma?)

Eq = 27.31(2%%/ma?

E3 = 15.88(2:2/ma?)

E; = 7.18(2#%/ma?)

Ey = 1.81(2%%/ma?)

(&)
Figure 2.8 (a) The graphical solution of Equations 2.49a and 2.49b. For the case
of P = 6 (chosen arbitrarily) there are four solutions at a = 1.345, 2.679, 3.985, and
5.226. (b) The wave functions and probability densities (shaded) for the four states.
(Compare with the infinite well shown in Figure 2.7.)

The Simple Harmonic Oscillator

Any reasonably well-behaved potential can be expanded in a Taylor series about
the point x,:

axw 5
— | (x=xp)t

dx?
(2.50)

1

V(x) = V(xo) + (j—”)( x) e

If x, is a potential minimum, the second term in the series vanishes, and since
the first term contributes only a constant to the energy, the interesting term is the
third term. Thus to a first approximation, near its minimum the system behaves



24 BASIC NUCLEAR STRUCTURE

Table 2.1 Sample Wave Functions of the One-Dimensional
Simple Harmonic Oscillator

n E, ¥, (x)

0 Lha, AP

1 2hw, 27V V4 Qax) e @' /2

2 Shay, 273 g7 44t x? - 2) e @2

3 Tha, 1/4/3 7/’ x? — 12ax) e *'*7/2

4 Sha, (1/8V6 7/4)(16ax* — 48a2x2 + 12) e~ *'*/2

E, = hwy(n + 3)
¥,(x) = @'nlm)"V2H,(ax) e
where H, (ax) is a Hermite polynomial

like a simple harmonic oscillator, which has the similar potential 1k(x — x,)*
The study of the simple harmonic oscillator therefore is important for under-
standing a variety of systems.
For our system, we choose the potential energy

V(x) = 1kx? (2.51)
for all x. The Schrodinger equation for this case is solved through the substitu-
tion Y(x) = h(x)e **/% where a® = Vkm /h. The function h(x) turns out to
be a simple polynomial in x. The degree of the polynomial (the highest power of

x that appears) is determined by the quantum number » that labels the energy
states, which are also found from the solution to the Schrodinger equation:

E,=hoy(n+1) n=0,1,23,.. (2.52)

where w, = y/k/m, the classical angular frequency of the oscillator. Some of the
resulting wave functions are listed in Table 2.1, and the corresponding energy
levels and probability densities are illustrated in Figure 2.9. Notice that the
probabilities resemble those of Figure 2.8; where E > V, the solution oscillates
somewhat sinusoidally, while for E < V (beyond the classical turning points
where the oscillator comes to rest and reverses its motion) the solution decays
exponentially. This solution also shows penetration of the probability density
into the classically forbidden region.

A noteworthy feature of this solution is that the energy levels are equally
spaced. Also, because the potential is infinitely deep, there are infinitely many
bound states.

Summary

By studying these one-dimensional problems, we learn several important details
about the wave properties of particles.

1. Quantum waves can undergo reflection and transmission when they encoun-
ter a potential barrier; this behavior is very similar to that of classical waves.

2. A wave packet can penetrate into the classically forbidden region and appear
beyond a potential barrier that it does not have enough energy to overcome.
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Figure 2.9 The lowest few energy levels and corresponding probability densities
of the harmonic oscillator.

3. Wave functions oscillate whenever E > V(x) and decay exponentially
whenever E < V(x).

4. When a potential confines a particle to a region of space, bound-state wave
functions can result. The particle is permitted only a set of discrete energy
values; the number of allowed energy values is determined by the depth of
the potential well.

2.4 PROBLEMS IN THREE DIMENSIONS

The Infinite Cartesian Well

We begin with a problem in Cartesian coordinates that illustrates an important
feature present in three-dimensional problems but not in one-dimensional prob-
lems. The potential in this case is

V(x,y,z)=0 0<x=<a, 0<y=<a, 0<z<a (2.53)

= o0 x<0, x>a, y<0, y>a, 2<0, z>a

The particle is thus confined to a cubical box of dimension a. Beyond the
impenetrable walls of the well, yy = 0 as before. Inside the well, the Schrodinger
equation is

n (% I %y

— + + =F 2.54
2m\ ax? ayz 922 \b(xs y’z) ( )

The usual procedure for solving partial differential equations is to try to find a
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Figure 2.10 Energy levels of a particle confined to a three-dimensional cubical
box. The energy is given in units of E, = #%n2 /2ma?.

separable solution, with ¢(x, y, z) = X(x) Y(y) Z(z), where X, Y, and Z are
each functions of a single variable. We will skip the mathematical details and give
only the result of the calculation:

2\*  ngmx  nmy  nmz
¢n n.n (X7 y’ Z) = (_) Sln Sln Sln (2-55)
iy, a a a a
h*n?
Eynn. = S (n2 + n2 + n?) (2.56)

where n,, n,, and n, are independent integers greater than zero. The lowest
state, the ground state, has quantum numbers (n,, n,, n,) = (1,1,1). Its prob-
ability distribution would show a maximum at the center of the box (x =y =
z = a/?2), falling gradually to zero at the walls like sin?.

The first excited state has three possible sets of quantum numbers: (2,1, 1),
(1,2,1), and (1,1, 2). Each of these distinct and independent states has a different
wave function, and therefore a different probability density and different expecta-
tion values of the physical observables, but they all have the same energy. This
situation is known as degeneracy; the first excited state is threefold degenerate.
Degeneracy is extremely important for atomic structure since it tells us how
many electrons can be put in each atomic subshell. We will soon discuss its
similar role in the nuclear shell model.

Figure 2.10 shows the lower portion of the energy spectrum of excited states.
Notice that the spacing and ordering do not have the regularity of the one-dimen-
sional problem.
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The Infinite Spherical Well

If we work in spherical coordinates with a potential that depends only on r (not
on @ or ¢), another new feature arises that will be important in our subsequent
investigations of nuclear structure. When we search for separable solutions, of the
form ¢(r,8,¢) = R(r)0O(0) (o), the central potential V(r) appears only in
the radial part of the separation equation, and the angular parts can be solved
directly. The differential equation for ®(¢) is

d’® s

d_qbz“-i-m{q)=0 (257)
where m?2 is the separation constant.

The solution is

0,,(8) = = (258)
where m,= 0, +1, £2,... . The equation for ©@(8) is
1 d{. dO© m?
sind %(smﬂﬁ) + |:f(f+ 1) - Sin20]@ =0 (259)

where /= 0,1,2,3,... and m,=0, +£1, £2,..., +7. The solution @{mt(ﬂ) can
be expressed as a polynomial of degree ¢ in siné or cosé. Together, and
normalized, @, (¢) and O,,, (0) give the spherical harmonics Y,,,, (0, ¢), some
examples of which are listed in Table 2.2. These functions give the angular part
of the solution to the Schrddinger equation for any central potential V(r). For
example, it is these angular functions that give the spatial properties of atomic
orbitals that are responsible for molecular bonds.

For each potential V(r), all we need to do is to find a solution of the radial
equation
£(¢+ 1)h?

+ [V(r) o R=ER  (2.60)

h? (d*R 2 dR
o >

— + _—_——
dr? r dr

C2m

Table 2.2 Spherical Harmonics for Some Low ¢ Values

1 mg Y,,,(0,¢) =6,,,(0)2,,($)

0 0 (1/4m)/?

1 0 (3/4m) /% cos §

1 +1 F(3/87)/?sinf e ¢

2 0 (5/16m)/2(3cos* 8 — 1)

2 +1 F(15/87) ?sinfcos§ e *'*
2 +2 (15/327)/%sin? § % 21¢

1
— img¢
an/(q‘)) m € ‘

20+ 1 (4= m,)! |2
TRl pree
2 (Z+ m,)!

where P;"¢(8) is the associated Legendre polynomial

6/»1/(0) = [
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Table 2.3 Spherical Bessel Functions —
Sample Expressions and Limits

- sin kr

Jo(kr) = r

(k) sin kr cos kr
ry= ——5 —

Jl( (kr)z kr

(k) 3sin kr 3cos kr  sin kr
r) = - -

ST S ™S

i (k (kr)[ k 0

k) =TS S ey 7

sin( kr — ¢m /2
j/(kr) = M kr — oo

kr

r\‘(1d /,
jz(k’)=(*z) (7;) Jo(kr)

The £(£+ 1) term is generally written as an addition to the potential; it is called
the “centrifugal potential” and it acts like a potential that keeps the particle away
from the origin when ¢> 0.

As an example, we consider the case of the infinite spherical well,

V(r)=0 r<a
= 0 r>a (2.61)

We require again that R(r) = 0 for r > a, since the walls of the infinite well are
impenetrable. Inside the well, the solution to Equation 2.60 for ¥ = 0 can be
expressed in terms of the oscillatory functions known as spherical Bessel functions
Jj,(kr), some of which are listed in Table 2.3. To find the energy eigenvalues, we
proceed exactly as in the one-dimensional problem and apply the continuity
condition on y at r = a. This gives

Jy(ka) =0 (2.62)

This is in effect a transcendental equation, which must be solved numerically.
Tables of the spherical Bessel functions are available that can be consulted to
find the zeros for any given value of £.* For example, we consider the case £= 0.
From the tables we find j,(x) = 0 at x = 3.14, 6.28, 9.42, 12.57, and so on. For
{=1, the first few zeros of j;(x) are at x = 449, 7.73, 10.90, 14.07. Since
E = hk?/2m, we can then solve for the allowed values of the energies. Repeat-
ing this process for £= 2, £= 3, and so on, we would be able to construct a
spectrum of the energy states, as is shown in Figure 2.11. As in the case of the
Cartesian well, the regularity of the one-dimensional problem is not present.
Also, note that the levels are again degenerate—since the energy depends only on
¢, the wave functions with different m, values all have the same energy. Thus, in
the case of the level with £= 2, the possible wave functions are j,(kr)Y,,(6, ¢),

*M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions (New York: Dover, 1965).
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(1,5) (3,0)

(2,2)
(2,1)
(1,3)
(2,0)

(1,4)

1.2) 1,1
(1,0)

Figure 2.11 Energy levels of a particle confined to a three-dimensional spherical
container. The energy is given in units of E, = h°n? /2ma®. Compare with the
spacings and degeneracies of Figure 2.10. The quantum number n does not arise
directly in the solution in this case; it serves to number the states of a given 7.

Jo(kr)Y (0, 9), jo(kr)Y(8, ), jy(kr)Y,_1(6,¢), and j,(kr)Y,_,(8,¢), for a
fivefold degeneracy. In fact, since m, is restricted to the values 0, +1,
£2,..., &7, there are exactly 2£+ 1 possible Y, for a given ¢, and thus each
level has a degeneracy of 27+ 1. (This situation is very similar to the case of
electronic orbits in atoms, in which there is also a central potential. The capacity
of each atomic subshell contains the factor of 2+ 1, which likewise arises from
the m, degeneracy.)

The probability to locate the particle in a volume dv is given by |¢/|? dv, where
the volume element was given in Equation 2.17. Such three-dimensional distribu-
tions are difficult to represent graphically, so we often consider the radial and
angular parts separately. To find the radial probability density, which gives the
probability to find the particle between r and r + dr averaged over all angles, we
integrate the probability density over § and ¢:

P(r)dr = f|¢|2du

=2 |R(r)|2drf sin0d0qu>|Y{m[|2 (2.63)

The spherical harmonics Y,, are themselves normalized, so that the integral
gives 1, and thus

P(r) =r?|R(r)? (2.64)

Some sample radial probability distributions for the infinite well are shown in
Figure 2.12.

The angular dependence of the probability density for any central potential is
given by | Y[m((ﬂ, ¢)|?, some samples of which are illustrated in Figure 2.13.
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Jo(kr)

kr ka kr

Figure 2.12 The left side shows, for some of the lower energy levels, the
unnormalized j,(kr), adjusted so that j,(ka) = 0. The right side shows the corre-
sponding.normalized radial probability density, r’R?. Note that all j, vanish at the
origin except j,, and that all probability densities vanish at r = 0. Also, note how the
“centrifugal repulsion” pushes corresponding maxima in P(r) away from the origin

as 7 increases.

Az z
| Yo0l? Y112 |¥10/2
¥ z
—C oKD~ ;
‘ |Y22|2 | Y2112 | Y202

Figure 2.13 Spatial probability distributions resulting from the Yom,- The three-
dimensional representations can be obtained by rotating each flgure about the z

axis.
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Table 2.4 Sample Radial Wave Functions for Three-Dimensional
Simple Harmonic Oscillator

n £ E, R(r)

0 0 1hw, Qa2 fm1/4) =2

1 1 $hag (20222 V3" ) ar) e

2 0 Thay, (2a°7? ﬁ/ﬂ'rrl/“)(% - a*r?) e~ /2

2 2 ha, @2 /15 7'/ 4)(aPr?) e/

3 1 2hw, (4a3/2/\/ﬁw1/4)(§ar - a’r) e~ /2

3 3 $hay @o*2V2 /105 7'/ 4)(ar?) e/

4 0 Yho, (40 ﬁ/ﬁgwl/“)(% - %a{zr2 + La*rt) e o'r/2
4 2 Uhaw, (4a*2y2 /Y105 7/ Za’r? — atrt) e /2

4 4 Lho, (8072 /3/105 w74y a*r? e @2

Note the similarity in form (polynomial X exponential) between these solutions and those of the
one-dimensional problem shown in Table 2.1. In this case the polynomials are called Laguerre
polynomials. The solutions are discussed in J. L. Powell and B. Crasemann, Quantum Mechanics
(Reading, MA: Addison-Wesley, 1961), Chapter 7.

The Simple Harmonic Oscillator

We consider a central oscillator potential, ¥(r) = 1kr2 The angular part of the
solution to the Schrodinger equation is Y,,, (8, ¢) for all central potentials, so all
we need to consider here is the solution to the radial equation. As in the
one-dimensional case, the solution can be expressed as the product of an
exponential and a finite polynomial. Some representative solutions are listed in
Table 2.4, and the corresponding radial probability densities are illustrated in
Figure 2.14. The general properties of the one-dimensional solutions are also
present in this case: oscillation in the classically allowed region, and exponential
decay in the classically forbidden region.
The energy levels are given by

E, = hoy(n + %) (2.65)

where n = 0,1,2,3,... . The energy does not depend on ¢, but not all £ values
are permitted. From the mathematical solution of the radial equation, the
restrictions on ¢ are as follows: ¢ can be at most equal to n and takes only even
or only odd values as # is even or odd. For n = 5, the permitted values of ¢ are
1, 3, and 5; for n = 4, the values of ¢ are 0, 2, and 4. Since the energies do not
depend on m, either, there is an additional degeneracy of 2¢+ 1 for each ¢
value. Thus the n = 5 level has a degeneracy of [(2 X 1+ 1)+ (2 X3+ 1)+
(2 X 5+ 1)] = 21, while the n = 4 level has a degeneracy of [(2 X0 + 1) +
(2X2+1)+ (2 x4+ 1)]=15. Figure 2.15 shows some of the energy levels
and their degeneracies, which are equal to 5(n + 1)(n + 2).

The Coulomb Potential

The attractive Coulomb potential energy also has a simple central form, V(r) =
— Ze?/4me,r, for the interaction between electrical charges + Ze and —e, such
as in the case of a single electron in an atom of atomic number Z. The angular
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1-—

P(r)

P(r)

ar

P(r) n=0,£’=0

l | |

1 2 3 4 ar
Figure 2.14 Radial probabililty densities for some states of the three-dimensional
harmonic oscillator. The vertical arrows mark the classical turning points. As in
Figure 2.12, note that P(r) vanishes for r = 0 (but note from Table 2.4 that R(r) is
nonvanishing at r = 0 only for /= 0). Also note the *‘centrifugal repulsion’ for the
larger ¢ values.

part of the wave function is again given by Y,, (6, ¢), and some of the radial
wave functions R(r) are listed in Table 2.5. The energy levels are E, =
(—mZ%*/327%,2h*n*) and are shown in Figure 2.16; the radial probability
density is plotted for several states in Figure 2.17. The relationship between n
and ¢/ is different from what it was for the oscillator potential: for each level n,
the permitted values of ¢ are 0,1,2,... (n — 1). The total degeneracy of each
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(5,1) (5,3 (5,5)

4,0 @42 (4,4)
(3,1) (3,3)

2,00 2,2
1,1

Figure 2.15 Some of the lower energy levels of a particle in a central three-
dimensional oscillator potential.

Table 2.5 Coulomb (Hydrogenic) Radial Wave Functions

’ ‘ R(r)

L 0 AZ/ag)/* e %/

2. 0 (Z/2a,)>*Q — Zr/a,) e~ Z"/240

2 1 37V Z/2ay)H(Zr/ay) e /240

3 0 2(Z/3ay)*[3 — 2Zr/ag + A Zr/3ay)*] e” %73
3 1 @2 /9N Z/3a,)X(Zr/ay)1 — Zr/6ay) e~ /30
3 2 V2 2TV5X(Z/3ay)> /> (Zr/ay)? e %734

The radial wave functions have the mathematical form of associated Laguerre polynomials multiplied
by exponentials. The Bohr radius a, is 4meyA>/me?. For a discussion of these solutions, see L.
Pauling and E. B. Wilson, Introduction to Quantum Mechanics (New York: McGraw-Hill, 1935),
Chapter 5.

energy level, including the various ¢ values and the 2+ 1 degeneracy of each, is
2
n-.

Summary

The mathematical techniques of finding and using solutions to the Schrodinger
equation in three dimensions are similar to the techniques we illustrated previ-
ously for one-dimensional problems. There are two important new features in the
three-dimensional calculations that do not arise in the one-dimensional calcula-
tions: (1) The energy levels are degenerate—several different wave functions can
have the same energy. The degeneracies will have the same effect in the nuclear
shell model that the ¢ and m, degeneracies of the energy levels of the Coulomb
potential have in the atomic shell model—they tell us how many particles can
occupy each energy level. (2) When the potential depends only on 7 (not on # or
¢), the wave functions can be assigned a definite angular momentum quantum
number #. These new features will have important consequences when we discuss
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Figure 2.16 The lower energy levels in a Coulomb potential, shown for Z = 1
(hydrogen atom). The states are labeled with (n, £); the degeneracies are indicated
on the left and the energy values on the right.

nuclear models in Chapter 5. The behavior of angular momentum in quantum
theory is discussed in the next section.

2.5 QUANTUM THEORY OF ANGULAR MOMENTUM

In solutions of the Schrédinger equation for three-dimensional problems, the
quantum number ¢ plays a prominent role. In atomic physics, for example, it
serves to label different electron wave functions and to tell us something about
the spatial behavior of the wave functions. This angular momentum quantum
number has the same function in all three-dimensional problems involving central
potentials, where V' = V(r).

In classical physics, the angular momentum ¢ of a particle moving with linear
momentum p at a location r from a reference point is defined as

l=rXp (2.66)

In quantum mechanics, we can evaluate the expectation value of the angular
momentum by analogy with Equation 2.10. We first consider the magnitude of
the angular momentum, and for this purpose it is simplest to calculate £2. We
must first find a quantum mechanical operator for £2, as we discussed in Section
2.2. This can be done simply by replacing the components of p with their
operator equivalents: p, = —ih d/dx, p,= —ih d/dy, p, = —ih d/dz. Evaluat-
ing the cross product then gives terms of the form ¢, = yp, — zp,, and finally
computing (¢ *) = (£} + £} + £}) gives the remarkably simple result, which is
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Figure 2.17 Radial probability distributions for a particle in a Coulomb potential
(hydrogenic atom). The probability vanishes at r = 0, but as before the /= 0 wave
functions do not. This property becomes especially important for phenomena that
depend on the overlap of atomic wave functions with the nucleus —only /=0
states contribute substantially to such phenomena (electron capture, hyperfine
structure, etc.). Why doesn’t the “‘centrifugal repulsion” appear to occur in this
case?

independent of the form of R(r),
(L2 =h%(+1) (2.67)

That is, whenever we have a central potential, which gives a wave function
R(r)Y,, (0, ¢), the magnitude of the angular momentum is fixed at the value
given by Equation 2.67; the angular momentum is a constant of the motion (as it is
in classical physics for central potentials). The atomic substates with a given ¢
value are labeled using spectroscopic notation; we use the same spectroscopic
notation in nuclear physics: s for /=0, p for /=1, and so on. These are
summarized in Table 2.6.

When we now try to find the direction of 4 we run into a barrier imposed by
the uncertainty principle: quantum mechanics permits us to know exactly only

Table 2.6 Spectroscopic Notation

¢ value 0 1 2 3 4 5 6
Symbol s P d f g h i
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Figure 2.18 The vector ¢/ precesses rapidly about the z axis, so that £, stays
constant, but £ and ¢, are variable.

X
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one component of £ at a time. Once we determine the value of one component,
the other two components are completely indeterminate. (This is a fundamental
limitation, and no amount of trickery-can get us around it. It is the very act of
measuring one component that makes the other two indeterminate. When we
measure £, we force £, and £, into indeterminacy; when we then measure ¢,
for the same system, our previous knowledge of 7, is destroyed as £, is now
forced into indeterminacy.) By convention, we usually choose the z component of
¢ to be determined, and computing {Z,) as described above,

(£,) = hm, (2.68)
where m,= 0, £1, +2,..., +¢. Notice that |{£,)| < |£| = hj¢(£+ 1) —the z
component of the vector is always less than its length. If |{Z,)| = |/] were

permitted, then we would have exact knowledge of all three components of ¢ (¢,
and £, would be zero if ¢ were permitted to align with the z axis). The
conventional vector representation of this indeterminacy is shown in Figure 2.18
—{ rotates or precesses about the z axis keeping ¢, fixed but varying ¢, and ¢,

The complete description of an electronic state in an atom requires the
introduction of a new quantum number, the intrinsic angular momentum or spin.
For the electron, the spin quantum number is s = 5. The spin can be treated as
an angular momentum (although it cannot be represented in terms of classical
variables, because it has no classical analog). Thus

(s*y =h%(s+1) (2.69)
(s, =hm, (m,= +1) (2.70)
It is often useful to imagine the spin as a vector s with possible z components

+ ik
+ 5h.

Nucleons, like electrons, have spin quantum numbers of 1. A nucleon moving
in a central potential with orbital angular momentum ¢ and spin s has a total
angular momentum

j=~£¢+s (2.711)
The total angular momentum j behaves in a manner similar to £ and s:
() =rji+1) (272)

(o) =l +5,) = hm; (2.73)
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(a) (b)

Figure 2.19 The coupling of orbital angular momentum ¢ to spin angular
momentum s giving total angular momentum j. (a) Coupling giving j= ¢ + 5. The
vectors £ and s have definite lengths, as does j. The combined ¢ and s vectors
rotate or precess about the direction of j; in this coupling the z components 4, and
s, thus do not have definite values. The vector j precesses about the z direction so
that j, has a definite value. (b) The similar case of j = ¢/ — 1. In interpreting both
figures, keep in mind that all such representations of vectors governed by the rules
of qguantum mechanics are at best symbolic and at worst misleading.

where m; = —j, —j +1,..., j = 1, j and where j is the total angular momen-
tum quantum number. From Equations 2.68, 2.70, and 2.73 it is apparent that
m,=m,+m. =m,+ % (2.74)

Since m, is always an integer, m, must be half-integral (+ L+ 3,+£3,...)and

thus j must be half-integral. The vector coupling of Equation 2.71 suggests only
two possible values for j: £+ 1 or £— 1, which are illustrated in Figure 2.19.

Usually, we indicate the j value as a subscript in spectroscopic notation. Thus,
for £/= 1 (p states), there are two possible j values: £+ 1= 3 and /— ;= J. We
would indicate these states as p;,, and p,,. When there is an additional
quantum number, such as a principal quantum number n (or perhaps just an
index which counts the states in order of increasing energy), we indicate it as
2p; /3, 3P3 2, and so on.

In atoms, it is often useful for us to picture the electrons as moving in well
defined orbits with definite £ and j. It is not at all obvious that a similar picture
is useful for nucleons inside the nucleus, and thus it is not clear that £ and j will
be useful labels. We discuss this topic in detail when we consider the nuclear shell
model in Chapter 5.

2.6 PARITY

The parity operation causes a reflection of all of the coordinates through the
origin: r = —r. In Cartesian coordinates, this means x - —x, y - —y, z -
—z; in spherical coordinates, r > r, § > 7 — 0, ¢ = ¢ + 7. If a system is left
unchanged by the parity operation, then we expect that none of the observable
properties should change as a result of the reflection. Since the values we measure
for the observable quantities depend on |¢|?, then we have the following
reasonable assertion:

It V(r) = V(—r), then | (r) =[y(-r)["
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This assertion, whose reverse is also true, has two important consequences for our
work in nuclear physics:

1.

If [¢(r) > =|¢(=r)|* then ¢(—r) = +¢(r). That is, the parity operation
has either of two effects on a wave function. The case y(—r) = +y(r) is
known as positive or even parity, while the case Y (—r) = —y(r) is negative
or odd parity. If the potential ¥(r) is left unchanged by the parity operation,
then the resulting stationary-state wave functions must be of either even or
odd parity. Mixed-parity wave functions are not permitted. Recall our
solutions for the one-dimensional harmonic oscillator. The potential 1kx? is
certainly invariant with respect to the parity operation x — —x. The wave
functions listed in Table 2.1 have either only odd powers of x, and therefore
odd parity, or only even powers of x, and therefore even parity. Polynomials
mixing odd and even powers do not occur. Also, review the solutions for the
finite potential well. Since the well lies between x = +a/2 and x = —a/2,
the potential is symmetric with respect to the parity operation: V(x) =
V(—x). Notice the solutions illustrated in Figure 2.8. For some of the
solutions, Y (—x) = Y(x) and their parity is even; the other solutions have
Y(—x) = —¢(x) and odd parity.

In ;hree dimensions, the parity operation applied to the g’{m( gives a phase
(== Qe

D oax’
N

Q
Nt

Y, (10,9 +7)=(~1)Y,, (6.4) (2.75)

Central potentials, which depend only on the magnitude of r, are thus
invariant with respect to parity, and their wave functions have definite parity,
odd if ¢ is odd and even if £ is even.

The wave function for a system of many particles is formed from the
product of the wave functions for the individual particles. The parity of the
combined wave function will be even if the combined wave function repre-
sents any number of even-parity particles or an even number of odd-parity
particles; it will be odd if there is an odd number of odd-parity particles.
Thus nuclear states can be assigned a definite parity, odd or even. This is
usually indicated along with the total angular momentum for that state, as
for example, 3 or 2. In Chapter 10 we will discuss how the parity of a
state can be determined experimentally.

The second consequence of the parity rule is based on its converse. If we find
a system for which [¢(r)|* # |y (—r)|? then we must conclude that V(r) #
V(—r); that is, the system is not invariant with respect to parity. In 1957 it
was discovered that certain nuclear processes (8 decays) gave observable
quantities whose measured values did not respect the parity symmety. On the
other hand, no evidence has yet been obtained that either the strong nuclear
interaction or the electromagnetic interaction violate parity. The establish-
ment of parity violation in 8 decay was one of the most dramatic discoveries
in nuclear physics and has had profound influences on the development of
theories of fundamental interactions between particles. A description of these
experiments is given in Section 9.9.



ELEMENTS OF QUANTUM MECHANICS 39

2.7 QUANTUM STATISTICS

When we group several particles together to make a larger quantum system
(several nucleons in a nucleus, several electrons in an atom, several atoms in a
molecule) a new quantum effect arises if the particles are indistinguishable from
one another. Let us consider the case of two particles, for example, the two
electrons in a helium atom. Suppose one electron is described by coordinates r,
and is in the state y 4, while the other electron is described by coordinates r, and
is in the state y,. The combined wave function is the product of the two
component wave functions; thus = ,(r)yg(r,). Now suppose the two elec-
trons are interchanged so that the new wave function is ¥’ = {z(r){ (r,). Is
there any measurement we could do to detect whether this interchange had taken
place?

If the electrons are truly indistinguishable, the answer to this question must be
no. There is no observational scheme for distinguishing the “first electron” from
the “second electron.” Thus we have a result that is somewhat similar to our
result for the parity operation: Probability densities must be invariant with respect
to exchange of identical particles. That is, the exchanged wave function y,, can at
most differ only in sign from the original wave function y,,. We therefore have
two cases. If the sign does not change upon exchange of the particles, we have a
symmetric wave function; for symmetric wave functions, {,, = ¢,;. If the ex-
change changes the sign, we have an antisymmetric wave function, for which
Vo1 = —¥,. All combined wave functions representing identical particles must be
either completely symmetric or completely antisymmetric. No “mixed symmetry”
wave functions are allowed.

When we turn to our laboratory experiments to verify these assertions, we find
a further classification to which there are no known exceptions: all particles with
integral spins (0,1,2,...) have symmetric combined wave functions, while all
particles with half-integral spins (3, 3, 3, ...) have antisymmetric combined wave
functions.

The above two-particle functions ¥ and ¢’ will not do for combined wave
functions because they are neither symmetric nor antisymmetric. That is, ¢’ does
not at all look like either i or —4. Instead, consider the following combined
wave function:

b= 7 [0 90(m) £ 57 276)

If we choose the plus sign, then the combined wave function is symmetric with
respect to interchange of the particles. If we choose the minus sign then the result
is an antisymmetric wave function. The factor of 1/ V2 ensures that the resulting
combination is normalized (assuming that each of the component wave functions
is itself normalized).

A special case arises when we have identical quantum states A and B. (We can
regard 4 and B as representing a set of quantum numbers.) When A is the same
as B, the antisymmetric combination wave function vanishes identically, and so
its probability density is always zero. The probability to find two identical particles
of half-integral spin in the same quantum state must always vanish. This is of course
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just the Pauli exclusion principle, which determines why atomic subshells fill in a
certain way. This vanishing of the antisymmetric wave function is the mathemati-
cal basis of the Pauli principle. No such vanishing occurs for the symmetric
combination, so there is nothing to prevent identical particles of integral spin
from occupying the same quantum state.

Later in this text, we apply the Pauli principle to nucleons and show its
importance in understanding the nuclear shell model. We also construct some
simple antisymmetric wave functions for the quarks that make up nucleons and
other similar particles.

2.8 TRANSITIONS BETWEEN STATES

A true stationary state lives forever. The expectation values of physical observ-
ables, computed from the wave function of a stationary state, do not change with
time. In particular, the expectation value of the energy is constant in time. The
energy of the state is precisely determined, and the uncertainty in the energy,

AE = |(E?) — (E)? (2.77)

vanishes, because (E?) = (E)? for this case. The Heisenberg relationship,
AFEAt > h/2, then implies that At = oco. Thus a state with an exact energy lives
forever; its lifetime against decay (to lower excited states, for example) is infinite.

Now suppose our system is subject to a weak perturbing potential V', in
addition to the original potential V. In the absence of V’, we can solve the
Schrodinger equation for the potential V' and find a set of eigenstates ¢, and
corresponding eigenvalues E,. If we now include the weak additional potential
V', we find that the states are approximately, but not exactly, the previous
eigenstates v, of V. This weak additional potential permits the system to make
transitions between the “approximate” eigenstates y,. Thus, under the interac-
tion with a weak electromagnetic field, a hydrogen atom can make transitions,
such as 2p — 1s or 3d — 2p. We still describe the various levels as if they were
eigenstates of the system.

Even though a system may make a transition from an initial energy state E; to
a final state E;, energy must be conserved. Thus the total decay energy must be
constant. If the final state E; is of lower energy than E;, the energy difference
E, — E; must appear as radiation emitted in the decay. In transitions between
atomic or nuclear excited states, a photon is emitted to carry the energy E, — E;.

A nonstationary state has a nonzero energy uncertainty AE. This quantity is
often called the “width” of the state and is usually represented by I'. The lifetime
7 of this state (the mean or average time it lives before making a transition to a
lower state) can be estimated from the uncertainty principle by associating 7 with
the time Af during which we are permitted to carry out a measurement of the
energy of the state. Thus 7 = /s /I". The decay probability or transition probability
A (the number of decays per unit-time) is inversely related to the mean lifetime 7:

1
- - (2.78)

T

It would be very useful to have a way to calculate A or 7 directly from the
nuclear wave functions. We can do this if we have knowledge of (1) the initial
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and final wave functions {; and v, which we regard as approximate stationary
states of the potential V; and (2) the interaction V'’ that causes the transition
between the states. The calculation of A is too detailed for this text, but can be
found in any advanced text on quantum mechanics. We will merely state the
result, which is known as Fermi’s Golden Rule:

2 2
A= — IV p(E) (2.79)

The quantity ¥/ has the form of an expectation value:

Vi= [yt vivdo (2.80)

Notice again the ordering of the states f and i in the integral. The integral Vy/ is
sometimes called the matrix element of the transition operator V’. This terminol-
ogy comes from an alternative formulation of quantum mechanics based on
matrices instead of differential equations. Be sure to take special notice that the
decay probability depends on the square of the transition matrix element.

The quantity p(E;) is known as the density of final states. It is the number of
states per unit energy interval at E;, and it must be included for the following
reason: if the final state E; is a single isolated state, then the decay probability
will be much smaller than it would be in the case that there are many, many
states in a narrow band near E;. If there is a large density of states near E;, there
are more possible final states that can be reached by the transition and thus a
larger transition probability. The density of final states must be computed based
on the type of decay that occurs, and we shall consider examples when we discuss
B decay, y decay, and scattering cross sections.
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PROBLEMS

1.

2.

10.

Derive Equation 2.37 and plot the transmission coefficient as a function of
the energy E of the incident particle. Comment on the behavior of 7.

Derive Equation 2.39 and plot the transmission coefficient as a function
of E.

Solve the Schrodinger equation for the following potential:
V(x) = o0 x<0
= -V 0<x<a
=0 x>a

Here V, is positive and solutions are needed for energies E > 0. Evaluate all
undetermined coefficients in terms of a single common coefficient, but do
not attempt to normalize the wave function. Assume particles are incident
from x = — .

Find the number of bound states and their energies in the finite one-dimen-
sional square well when P = 10.

Find the solution to the “half” harmonic oscillator:
V(x) = x <0
=1lkx? x>0

Compare the energy values and wave functions with those of the full
harmonic oscillator. Why are some of the full solutions present and some
missing in the “half” problem?

For the ground state and first two excited states of the one-dimensional
simple harmonic oscillator, find the probability for the particle to be beyond
the classical turning points.

(a) For the ground state of the one-dimensional simple harmonic oscillator,
evaluate (x) and (x?).

(b) Find Ax = [(x?) — (x)*]'/~

(c) Without carrying out any additional calculations, evaluate ( p,) and
(p?). (Hint: Find ( p2/2m).)

(d) Evaluate Ap, and the product Ax - Ap,. A wave packet with this shape

(called a Gaussian shape) is known as a ““minimum-uncertainty” wave
packet. Why?

(a) Find the wave functions and energy levels for a particle confined to a
two-dimensional rectangular box, with
V(x,y)=10 —a<x<+4a,-b<y< +b
=00 |x|>a,ly| >b
(b) Make a diagram similar to Figure 2.10 showing the levels and degener-
acies for b = a and for b = 2a.
Continue Figure 2.10 upward to 50E,.
Continue Figure 2.11 upward to 20E,,.



11.

12.

13.

14.

15.

16.
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Carry out the separation procedure necessary to obtain the solution to
Equation 2.54.

Show that the first four radial wave functions listed in Table 2.4 are
solutions to the Schrodinger equation corresponding to the proper value of
the energy, and also show that they are normalized.

Find the solutions to the one-dimensional infinite square well when the

potential extends from —a/2 to +a/2 instead of from 0 to +a. Is the

potential invariant with respect to parity? Are the wave functions? Discuss

the assignment of odd and even parity to the solutions.

Find the angle between the angular momentum vector £ and the z axis for

all possible orientations when £= 3.

(a) What are the possible values of j for f states?

(b) What are the corresponding m ?

(¢) How many total m, states are there?

(d) How many states would there be if we instead used the labels m, and
m?

A combined wave function representing the total spin S of three electrons

can be represented as y = ,(m)¢,(m,);(m,) where m;= + 1 for a

spin- 5 electron. (a) List all such possible wave functions and their total

projection M. (b) Identify the number of M values with the number of

different values of the total spin S. (Some values of S may occur more than

once.) (c) Draw simple vector diagrams showing how the different couplings

of s;, s,, and 55 can lead to the deduced number and values of S. (Hint:

First couple two of the spins, and then couple the third to the possible

resultants of the first two.) (d) In the coupling of four electrons, give the

possible values of S and their multiplicity, and show that the number of M

states agrees with what would be expected from tabulating the possible

wave functions.
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NUCLEAR PROPERTIES

Like many systems governed by the laws of quantum mechanics, the nucleus is a
somewhat enigmatic and mysterious object whose properties are much more
difficult to characterize than are those of macroscopic objects. The list of
instructions needed to build an exact replica of a French colonial house or a ’57
Chevy is relatively short; the list of instructions necessary to characterize all of
the mutual interactions of the 50 nucleons in a medium weight nucleus could
contain as many as 50! or about 10%* terms! We must therefore select a different
approach and try to specify the overall characteristics of the entire nucleus. Are
there a few physical properties that can be listed to give an adequate description
of any nucleus?

To a considerable extent, we can describe a nucleus by a relatively small
number of parameters: electric charge, radius, mass, binding energy, angular
momentum, parity, magnetic dipole and electric quadrupole moments, and
energies of excited states. These are the static properties of nuclei that we
consider in this chapter. In later chapters we discuss the dynamic properties of
nuclei, including decay and reaction probabilities. To understand these static and
dynamic properties in terms of the interaction between individual nucleons is the
formidable challenge that confronts the nuclear physicist.

3.1 THE NUCLEAR RADIUS

Like the radius of an atom, the radius of a nucleus is not a precisely defined
quantity; neither atoms nor nuclei are solid spheres with abrupt boundaries. Both
the Coulomb potential that binds the atom and the resulting electronic charge
distribution extend to infinity, although both become negligibly small at distances
far beyond the atomic radius (107!° m). What is required is an “operational
definition” of what we are to take as the value of the atomic radius. For instance,
we might define the atomic radius to be the largest mean radius of the various
electronic states populated in an atom. Such a property would be exceedingly
difficult to measure, and so more practical definitions are used, such as the
spacing between atoms in ionic compounds containing the atom of interest. This
also leads to some difficulties since we obtain different radii for an atom when it
is in different compounds or in different valence states.
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For nuclei, the situation is better in some aspects and worse in others. As we
will soon discuss, the density of nucleons and the nuclear potential have a similar
spatial dependence—relatively constant over short distances beyond which they
drop rapidly to zero. It is therefore relatively natural to characterize the nuclear
shape with two parameters: the mean radius, where the density is half its central
value, and the “skin thickness,” over which the density drops from near its
maximum to near its minimum. (In Section 5 of this chapter, we discuss a third
parameter, which is necessary to characterize nuclei whose shape is not spherical.)

The problems we face result from the difficulty in determining just what it is
that the distribution is describing; the radius that we measure depends on the
kind of experiment we are doing to measure the nuclear shape. In some
experiments, such as high-energy electron scattering, muonic X rays, optical and
X-ray isotope shifts, and energy differences of mirror nuclei, we measure the
Coulomb interaction of a charged particle with the nucleus. These experiments
would then determine the distribution of nuclear charge (primarily the distribution
of protons but also involving somewhat the distribution of neutrons, because of
their internal structure). In other experiments, such as Rutherford scattering, a
decay, and pionic X rays, we measure the strong nuclear interaction of nuclear
particles, and we would determine the distribution of nucleons, called the
distribution of nuclear matter.

The Distribution of Nuclear Charge

Our usual means for determining the size and shape of an object is to examine
the radiation scattered from it (which is, after all, what we do when we look at an
object or take its photograph). To see the object and its details, the wavelength of
the radiation must be smaller than the dimensions of the object; otherwise the
effects of diffraction will partially or completely obscure the image. For nuclei,
with a diameter of about 10 fm, we require A < 10 fm, corresponding to p = 100
MeV /c. Beams of electrons with energies 100 MeV to 1 GeV can be produced
with high-energy accelerators, such as the Stanford linear accelerator, and can be
analyzed with a precise spectrometer to select only those electrons that are
elastically scattered from the selected nuclear target. Figure 3.1 shows an example
of the results of such an experiment. The first minimum in the diffractionlike
pattern can clearly be seen; for diffraction by a circular disk of diameter D, the
first minimum should appear at § = sin~! (1.22A /D), and the resulting estimates
for the nuclear radii are 2.6 fm for O and 2.3 fm for '2C. These are, however,
only rough estimates because potential scattering is a three-dimensional problem
only approximately related to diffraction by a two-dimensional disk.

Figure 3.2 shows the results of elastic scattering from a heavy nucleus, *®*Pb.
Several minima in the diffractionlike pattern can be seen. These minima do not
fall to zero like diffraction minima seen with light incident on an opaque disk,
because the nucleus does not have a sharp boundary.

Let us try to make this problem more quantitative. The initial electron wave
function is of the form e’ i’’, appropriate for a free particle of momentum
p; = hk;. The scattered electron can also be regarded as a free particle of
momentum p; = hk,; and wave function e’*:"". The interaction V(r) converts the
initial wave into the scattered wave, and according to Equation 2.80 the probabil-
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Figure 3.1 Electron scattering from 0 and 2C. The shape of the cross section
is somewhat similar to that of diffraction patterns obtained with light waves. The
data come from early experiments at the Stanford Linear Accelerator Center (H. F.
Ehrenberg et al., Phys. Rev. 113, 666 (1959)).

ity for the transition will be proportional to the square of the quantity

Flki, k) = [$3V(r)y;do (3.1)

F(q) = f eV (r) dv (3.2)

apart from a normalization constant, which is chosen so that F(0) = 1. Here
q = k, — k., which is essentially the momentum change of the scattered electron.
The interaction ¥(r) depends on the nuclear charge density Zep, (r’), where r’ is
a coordinate describing a point in the nuclear volume and p, gives the distribu-
tion of nuclear charge. That is, as indicated in Figure 3.3, an electron located at r
feels a potential energy due to the element of charge dQ located at r’:

edQ

dV= - ————
4meqir — r'|

Ze%,(r’) dv’

4aey|r — r'|

(3.3)

To find the complete interaction energy V(r), we sum over all of the contribu-
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Figure 3.2 Elastic scattering of electrons from 2°8Pb. Note the different vertical
and horizontal scales for the two energies. This also shows diffractionlike behavior,
but lacks sharp minima. (J. Heisenberg et al., Phys. Rev. Lett. 23, 1402 (1969).)

tions dQ within the nucleus:

V(r) =

~ Ze? fpe(r’) v’ (3.4)

dmeyd |r—r’|

Writing g * r = gr sin§ in Equation 3.2 and integrating over r, the properly
normalized result is

Flg) = [ 4o, (r) dv (3.5)

and if p,(r’) depends only on the magnitude r’ (not on #’ or ¢’) we obtain
4a .
F(q) = —fsm qr'p,(r')r’dr’ (3.6)
q

This quantity is a function of ¢, the magnitude of ¢. Since we originally assumed
that the scattering was elastic, then |p;| = |p;| and g is merely a function of the
scattering angle a between p; and p;; a bit of vector manipulation shows
g = (2p/h)sina/2 where p is the momentum of the electron. Measuring the
scattering probability as a function of the angle a then gives us the dependence
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Figure 3.3 The geometry of scattering experiments. The origin of coordinates is
located arbitrarily. The vector r’ locates an element of charge dQ within the
nucleus, and the vector r defines the position of the electron.

of Equation 3.6 on ¢g. The quantity F(q) is known as a form factor, and the
numerical inversion of Equation 3.6, actually an inverse Fourier transformation,
then gives us p,(r’).

The results of this procedure for several different nuclei are shown in Figure
3.4. One remarkable conclusion is obvious—the central nuclear charge density is
nearly the same for all nuclei. Nucleons do not seem to congregate near the
center of the nucleus, but instead have a fairly constant distribution out to the
surface. (The conclusion from measurements of the nuclear matter distribution is
the same.) Thus the number of nucleons per unit volume is roughly constant:

A
e constant (3.7)

3

where R is the mean nuclear radius. Thus R oc 4'/? and defining the proportion-
ality constant R, gives

R =R, A3 (3.8)

From electron scattering measurements, such as those in Figure 3.4, it is
concluded that R, = 1.2 fm. These measurements give the most detailed descrip-
tions of the complete nuclear charge distribution.

Figure 3.4 also shows how diffuse the nuclear surface appears to be. The charge
density is roughly constant out to a certain point and then drops relatively slowly
to zero. The distance over which this drop occurs is nearly independent of the
size of the nucleus, and is usually taken to be constant. We define the skin
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Figure 3.4 The radial charge distribution of several nuclei determined from
electron scattering. The skin thickness t is shown for O, Ni, and Pb; its value is
roughly constant at 2.3 fm. The central density changes very little from the lightest
nuclei to the heaviest. These distributions were adapted from R. C. Barrett and D. F.
Jackson, Nuclear Sizes and Structure (Oxford: Clarendon, 1977), which gives more
detail on methods of determining p(r).

thickness parameter ¢ as the distance over which the charge density falls from
90% of its central value to 10%. The value of ¢ is approximately 2.3 fm.

Figure 3.5 shows a more quantitative determination of the relationship be-
tween the nuclear radius and mass number, based on electron scattering results.
The root mean square (rms) radius, (r2)/2 is deduced directly from the
distribution of scattered electrons; for a uniformly charged sphere (r?) = iR?,
where R is the radius of the sphere. Figure 3.5 shows that the dependence of R
on A'/? is approximately valid over the range from the lightest to the heaviest
nuclei. From the slope of the line, we deduce R, = 1.23 fm.

The nuclear charge density can also be examined by a careful study of atomic
transitions. In solving the Schrodinger equation for the case of the atom with a
single electron, it is always assumed that the electron feels the Coulomb attrac-
tion of a point nucleus, V(r) = —Ze?/4me,r. Since real nuclei are not points,
the electron wave function can penetrate to r < R, and thus the electron spends
part of its time inside the nuclear charge distribution, where it feels a very
different interaction. In particular, as r — 0, V(r) will not tend toward infinity
for a nucleus with a nonzero radius. As a rough approximation, we can assume
the nucleus to be a uniformly charged sphere of radius R, for which the potential
energy of the electron for r < R is

oG e

4me R | 2 2\ R

while for r > R, the potential energy has the point—nucleus form.
The total energy E of the electron in a state ¥, of a point nucleus depends in
part on the expectation value of the potential energy

¥y = f YWy, dv (3.10)



50 BASIC NUCLEAR STRUCTURE

6
o 208pp
*
197,
51— l4gy 148Ng
4l 56Fe 89y
68
_ 4806 Zn
3 27p
g 3 23Na Y 323
% 12¢ »
2 —
1 —
. I R N B B
0 1 2 3 4 5 6
AV3

Figure 3.5 The rms nuclear radius determined from electron scattering experi-
ments. The slope of the straight line gives R, = 1.23 fm. (The line is not a true fit to
the data points, but is forced to go through the origin to satisfy the equation
R = R,A"/3) The error bars are typically smaller than the size of the points (+ 0.01
fm). More complete listings of data and references can be found in the review of
C. W. de Jager et al., Atomic Data and Nuclear Data Tables 14, 479 (1974).

where V' is the point-nucleus Coulomb potential energy. If we assume (as a first
approximation) that changing from a point nucleus to a uniformly charged
spherical nucleus does not significantly change the electronic wave function ¢,
then the energy E’ of the electron in a state of a uniformly charged spherical
nucleus depends on the expectation value of the potential V'’:

v’y = fr<R¢;‘V'¢" dv + fDR\p;V% d (3.11)

where the second integral involves only the 1/r potential energy. The effect of
the spherical nucleus is thus to change the energy of the electronic states, relative
to the point-nucleus value, by AE = E’ — E = (V') — (V'); the latter step
follows directly from our assumption that the wave functions are the same, in
which case the kinetic energy terms in E and E’ are identical. Using the 1s
hydrogenic wave function from Table 2.5, we find

e’ 47* & 1 3 1 r?
AE = —_— “2Zr/a0l — . — 4 — 32 3.12
4me, ag fg ¢ {r 2R 2 R3}r g ( )

The exponential factor in the integrand is nearly unity, because R/a, = 105,
and evaluating the remaining terms gives

2 Z%?* R?

Y 3
5 4me, ag

AE (3.13)
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This AE is the difference between the energy of the 1s state in an atom with a
“point” nucleus and the 1s energy in an atom with a uniformly charged nucleus
of radius R. The latter is a fair approximation to real nuclei (as suggested by
Figure 3.4); if we could only find a supply of atoms with “point” nuclei we could
measure AE and deduce R! Since no such nuclei exist, the next best strategy
would be to determine E’ from measurement (from K X rays, for example) and
to calculate the point-nucleus value E from the 1s atomic wave function.
Unfortunately, the atomic wave functions are not known with sufficient precision
to do this—AE is a very small difference, perhaps 1074 of E, and the simple
hydrogenlike 1s wave functions are not good enough to calculate E to a precision
of 1 part in 10* (relativistic effects and the presence of other electrons are two
factors that also influence the 1s energy). Thus a single measurement of the
energy of a K X ray cannot be used to deduce the nuclear radius.

Let’s instead measure and compare the K X-ray energies (resulting from
2p — 1s electronic transitions) in two neighboring isotopes of mass numbers A
and A’. Letting E(A) and E (A’) represent the observed K X-ray energies, we
have

Ex(4) — Ex(4') = EZp(A) - E(4) - EZp(A’) + Els(A,) (3.14)

If we assume that the 2p energy difference is negligible (recall from Chapter 2
that p-electron wave functions vanish at r = 0), the remaining 1s energy dif-
ference reduces to the difference between the AE values of Equation 3.13,
because E;, = E’ = E + AE and the “point” nucleus values £ would be the
same for the isotopes 4 and A’. Thus

Ex(4) = Eg(A') = AE(A’) — AE(4)

4,2

= —Eie—%zeg(,cﬁ/3 — A'*3) (3.15)

5 4me, a

The quantity Eg(A4) — Ex(A’) is called the K X-ray isotope shift, and a plot
against A%/3 of a sequence of isotope shifts of different isotopes A4 all compared
with the same reference A’ should give a straight line from whose slope we could
deduce R,,. Figure 3.6 is an example of such a plot for some isotopes of Hg. The
agreement with the 4%/> dependence is excellent. The slope, however, does not
give a reasonable value of R, because the 1s wave function used in Equation
3.12 is not a very good representation of the true 1s wave function. The
calculated K X-ray energies, for example, are about 10% lower than the observed
values. Detailed calculations that treat the 1s electron relativistically and take
into account the effect of other electrons give a more realistic relationship
between the slope of Figure 3.6 and the value of R,. The resulting values are in
the range of 1.2 fm, in agreement with the results of electron scattering experi-
ments.

It is also possible to measure isotope shifts for the optical radiations in atoms
(those transitions among the outer electronic shells that produce visible light).
Because these electronic orbits lie much further from the nucleus than the 1s
orbit, their wave functions integrated over the nuclear volume, as in Equation
3.12, give much smaller shifts than we obtain for the inner 1s electrons. In
Chapter 2 we showed that s states (/= 0 wave functions) give nonzero limits on
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Figure 3.6 K X-ray isotope shifts in Hg. The energy of the K X ray in Hg is about
100 keV, so the relative isotope shift is of the order of 10~ 6. The data show the
predicted dependence on A%/3, There is an “odd-even’’ shift in radius of odd-mass
nuclei relative to their even-A neighbors, brought about by the orbit of the odd
particle. For this reason, odd-A isotopes must be plotted separately from even-A
isotopes. Both groups, however, show the A2/3 dependence. The data are taken
from P. L. Lee et al., Phys. Rev. C 17, 1859 (1978).

¢ at small r. If the optical transitions involve s states, their isotope shifts can be
large enough to be measured precisely, especially using modern techniques of
laser interferometry. Figure 3.7 shows an example of optical shifts in Hg
isotopes; again the expected A>® dependence is consistent with the data.
Measurements across a large range of nuclei are consistent with R, = 1.2 fm.

These effects of the nuclear size on X-ray and optical transitions are very small,
about 10~4 to 10~ ° of the transition energy. The reason these effects are so small
has to do with the difference in scale of 10 between the Bohr radius a, and the
nuclear radius R. For integrals of the form of Equation 3.12 to give large effects,
the atomic wave function should be large at values of r near R, but instead the
atomic wave functions are large near r = a,/Z, which is far greater than R. We
can improve on this situation by using a muonic atom. The muon is a particle
identical to the electron in all characteristics except its mass, which is 207 times
the electronic mass. Since the Bohr radius depends inversely on the mass, the
muonic orbits have 1,207 the radius of the corresponding electronic orbits. In
fact, in a heavy nucleus like Pb, the muonic 1s orbit has its mean radius inside
the nuclear radius R; the effect of the nuclear size is a factor of 2 in the transition
energies, a considerable improvement over the factor of 107* to 107° in
electronic transitions.
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Figure 3.7 Optical isotope shifts in Hg isotopes from 198 to 205, measured
relative to 198. These data were obtained through laser spectroscopy; the experi-
mental uncertainties are about +1%. The optical transition used for these measure-
ments has a wavelength of 253.7 nm, and the isotope shift is therefore about one
part in 107. Compare these results with Figure 3.6. Data taken from J. Bonn et al.,
Z. Phys. A 276, 203 (1976).

Muons are not present in ordinary matter, but must be made artificially using
large accelerators that produce intense beams of = mesons. The # mesons then
decay rapidly (1073 s) to muons. (The properties of muons and = mesons are
discussed in Chapters 17 and 18.) Beams of the resulting muons are then focused
onto a suitably chosen target; atoms of the target capture the muons into orbits
similar to electronic orbits. Initially the muon is in a state of very high principal
quantum number #n, and as the muon cascades down toward its 1s ground state,
photons are emitted, in analogy with the photons emitted in electronic transitions
between energy levels. The energy levels of atomic hydrogen depend directly on
the electronic mass; we therefore expect the muonic energy levels and transition
energies to be 207 times their electronic counterparts. Since ordinary K X rays
are in the energy range of tens of keV, muonic K X rays will have energies of a
few MeV. Figure 3.8 shows some typical muonic K X rays; the isotope shift is
large compared with the isotope shift of electronic K X rays, which is typically
102 eV per unit change in 4.

In contrast to the case with electronic K X rays, where uncertainties in atomic
wave functions made it difficult to interpret the isotope shifts, we can use the
observed muonic X-ray energies directly to compute the parameters of the
nuclear charge distribution. Figure 3.9 shows the deduced rms radii, based once
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Figure 3.8 The muonic K X rays in some Fe isotopes. The two peaks show the
2p;,, to 1s,,, and 2p, ,, to 1s, ,, transitions, which have relative intensities in the
ratio 2:1 determined by the statistical weight (2j + 1) of the initial state. The isotope
shift can clearly be seen as the change in energy of the transitions. The effect is
about 0.4%, which should be compared with the 10~ ¢ effect obtained with elec-
tronic K X rays (Figure 3.6). From E. B. Shera et al., Phys. Rev. C 14, 731 (1976).

again on the model of the uniformly charged sphere. The data are roughly
consistent with R, 4>, with R, = 1.25 fm.

Yet another way to determine the nuclear charge radius is from direct
measurement of the Coulomb energy differences of nuclei. Consider, for example,
3H, and 3He,. To get from *He to *H, we must change a proton into a neutron.
As we discuss in Chapter 4, there is strong evidence which suggests that the
nuclear force does not distinguish between protons and neutrons. Changing a
proton into a neutron should therefore not affect the nuclear energy of the
three-nucleon system; only the Coulomb energy should change, because the two
protons in *He experience a repulsion that is not present in *H. The energy
difference between *He and *H is thus a measure of the Coulomb energy of the
second proton, and the usual formula for the Coulomb repulsion energy can be
used to calculate the distance between the protons and thus the size of the
nucleus.
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Figure 3.9 The mean nuclear radius determined from muonic X-ray measure-
ments. As in Figure 3.5, the data depend roughly linearly on A'/3 (again forcing the
line to go through the origin). The slope of the line gives R, = 1.25 fm. The data
are taken from a review of muonic X-ray determinations of nuclear charge distribu-
tions by R. Engfer et al., Atomic Data and Nuclear Data Tables 14, 509 (1974).

Consider now a more complex nucleus, such as 25U, 4. If we try to change a
proton to a neutron we now have a very different circumstance, because the 92nd
proton would become the 147th neutron. Because neutrons and protons each
must obey the Pauli principle, the orbital of the 92nd proton will differ from the
orbital of the 147th neutron, and in general it is not possible to calculate this
effect to sufficient accuracy to be able to extract the Coulomb energy. The
situation is resolved if we choose a case (as with 3He—>H) in which no change of
orbital is involved, that is, in which the number of the last proton that makes the
change is identical to the number of the last neutron after the change. The Z of
the first nucleus must equal the N of the second (and thus the N of the first
equals the Z of the second). Such pairs of nuclei are called mirror nuclei because
one is changed into the other by “reflecting” in a mirror that exchanges protons
and neutrons. Examples of such pairs of mirror nuclei are 3N, and '3C,, or
30Caq and 5K 5.

The Coulomb energy of a uniformly charged sphere of radius R is

31 2
Lol
5 4me, R

(3.16)

where Q is the total charge of the sphere. The difference in Coulomb energy
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between the mirror pairs is thus

AE =2 * [z - (z-1)]
€ 5 4meyR
2
== 27 - 1 3.17
5 47reOR( ) (3.17)

Since Z represents the nucleus of higher atomic number, the N of that nucleus
must be Z — 1, and so 4 =2Z — 1. With R = R 4"/,

3 e?
¢ 5 4me R,

These Coulomb energy differences can be directly measured in two ways. One of
the nuclei in the pair can decay to the other through nuclear 8 decay, in which a
proton changes into a neutron with the emission of a positive electron (positron).
The maximum energy of the positron is a measure of the energy difference
between the nuclei. A second method of measuring the energy difference is
through nuclear reactions; for example, when a nucleus such as 'B is bombarded
with protons, occasionally a neutron will be emitted leaving the residual nucleus
11C. The minimum proton energy necessary to cause this reaction is a measure of
the energy difference between 'B and !'C. (We discuss 8 decay in Chapter 9 and
reaction kinematics in Chapter 11.) The measured energy differences are plotted
against 4%/% in Figure 3.10. As expected from Equation 3.18, the dependence is
very nearly linear. The slope of the line gives R, = 1.22 fm.

AE A3 (3.18)

AE; (MeV)

A2/3

Figure 3.10 Coulomb energy differences of mirror nuclei. The data show the
expected A2/3 dependence, and the slope of the line gives R, = 1.22 fm.
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Even though these measurements of the nuclear charge radius use very differ-
ent techniques, they all give essentially the same results: the nuclear radius varies
with mass number as R,4'3, with R, =12 — 1.25 fm.

The Distribution of Nuclear Matter

An experiment that involves the nuclear force between two nuclei will often
provide a measure of the nuclear radius. The determination of the spatial
variation of the force between nuclei enables the calculation of the nuclear radii.
In this case the radius is characteristic of the nuclear, rather than the Coulomb,
force; these radii therefore reflect the distribution of all nucleons in a nucleus,
not only the protons.

As an example of a measurement that determines the size of the nuclear matter
distribution, we consider an experiment in which a *He nucleus (« particle) is
scattered from a much heavier target of '”’Au. If the separation between the two
nuclei is always greater than the sum of their radii, each is always beyond the
range of the other’s nuclear force, so only the Coulomb force acts. (This situation
is known as Rutherford scattering and is discussed in Chapter 11.) The probabil-
ity for scattering at a certain angle depends on the energy of the incident particle
exactly as predicted by the Rutherford formula, when the energy of the incident
particle is below a certain value. As the energy of the incident a particle is
increased, the Coulomb repulsion of the nuclei is overcome and they may
approach close enough to allow the nuclear force to act. In this case the
Rutherford formula no longer holds. Figure 3.11 shows an example of this effect.

For another example, we consider the form of radioactive decay in which an a
particle is emitted from the nucleus (see Chapter 8 for a complete discussion of «
decay). The a particle must escape the nuclear potential and penetrate a
Coulomb potential barrier, as indicated in Figure 3.12. The a decay probabilities
can be calculated from a standard barrier-penetration approach using the
Schrodinger equation. These calculated values depend on the nuclear matter
radius R, and comparisons with measured decay probabilities permit values of R
to be deduced.

A third method for determining the nuclear matter radius is the measurement
of the energy of #-mesic X rays. This method is very similar to the muonic X-ray
technique discussed above for measuring the charge radius. The difference
between the two techniques results from differences between muons and =«
mesons: the muons interact with the nucleus through the Coulomb force, while
the = mesons interact with the nucleus through the nuclear and the Coulomb
forces. Like the muons, the negatively charged = mesons cascade through
electronlike orbits and emit photons known as #-mesic X rays. When the
w-meson wave functions begin to overlap with the nucleus, the energy levels are
shifted somewhat from values calculated using only the Coulomb interaction. In
addition, the = mesons can be directly absorbed into the nucleus, especially from
the inner orbits; thus there are fewer X-ray transitions among these inner levels.
The “disappearance rate” of # mesons gives another way to determine the
nuclear radius.

All of these effects could in principle be used as a basis for deducing the
nuclear radius. However, the calculations are very sensitive to the exact onset of
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Figure 3.11 The breakdown of the Rutherford scattering formula. When the
incident a particle gets close enough to the target Pb nucleus so that they can
interact through the nuclear force (in addition to the Coulomb force that acts when
they are far apart) the Rutherford formula no longer holds. The point at which this
breakdown occurs gives a measure of the size of the nucleus. Adapted from a
review of a particle scattering by R. M. Eisberg and C. E. Porter, Rev. Mod. Phys.
33, 190 (1961).

overlap between the probe particle and the nuclear matter distribution. For these
calculations it is therefore very wrong to use the “uniform sphere” model of
assuming a constant density out to R and zero beyond R. We should instead use
a distribution, such as those of Figure 3.4, with a proper tail beyond the mean
radius.

We will not go into the details of the calculations, which are far more
complicated than our previous calculations of the charge radius. We merely give
the result, which may seem a bit surprising: the charge and matter radii of nuclei
are nearly equal, to within about 0.1 fm. Both show the A4/ dependence with
R, = 1.2 fm. Because heavy nuclei have about 50% more neutrons than protons,
we might have expected the neutron radius to be somewhat larger than the
proton radius; however, the proton repulsion tends to push the protons outward
and the neutron-proton force tends to pull the neutrons inward, until the
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Energy

Figure 3.12 Barrier penetration in a decay. The half-life for a emission depends
on the probability to penetrate the barrier, which in turn depends on its thickness.
The measured half-lives can thus be used to determine the radius R where the
nuclear force ends and the Coulomb repulsion begins.

neutrons and protons are so completely intermixed that the charge and matter
radii are nearly equal.

3.2 MASS AND ABUNDANCE OF NUCLIDES

In Appendix C is a table of measured values of the masses and abundances of
neutral atoms of various stable and radioactive nuclei. Even though we must
analyze the energy balance in nuclear reactions and decays using nuclear masses,
it is conventional to tabulate the masses of neutral atoms. It may therefore be
necessary to correct for the mass and binding energy of the electrons.

As we probe ever deeper into the constituents of matter, the binding energy
becomes ever greater in comparison with the rest energy of the bound system. In
a hydrogen atom, the binding energy of 13.6 eV constitutes only 1.4 X 1078 of
the total rest energy of the atom. In a simple nucleus, such as deuterium, the
binding energy of 2.2 MeV is 1.2 X 1072 of the total mass energy. The deuteron
is relatively weakly bound and thus this number is rather low compared with
typical nuclei, for which the fraction would be more like 8 X 1073, At a yet
deeper level, three massive quarks make up a nucleon. The masses of the quarks
are not known (no free quarks have yet been confirmed experimentally and
quarks may not be permitted to exist in a free state), but it is possible that they
may be greater than 100 GeV /c2. If so, the binding energy of the quarks in a
nucleon would be a fraction greater than 0.99 of the total mass of the quarks—
3 quarks of total rest energy of perhaps 300 GeV combine to produce a nucleon
of rest energy 1 GeV!

It is therefore not possible to separate a discussion of nuclear mass from a
discussion of nuclear binding energy; if it were, then nuclei would have masses
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given by Zm  + Nm,, and the subject would hardly be of interest. In this
section, we confine our discussion to the experimental determination of nuclear
masses, treating the nucleus as a simple object with no internal structure. In the
next section we analyze the measured masses to determine the binding energy.

The measurement of nuclear masses occupies an extremely important place in
the development of nuclear physics. Mass spectrometry was the first technique of
high precision available to the experimenter, and since the mass of a nucleus
increases in a regular way with the addition of one proton or neutron, measuring
masses permitted the entire scheme of stable isotopes to be mapped. Not so with
atomic physics—nineteenth-century measurements of average atomic weights led
to discrepancies in the atomic periodic table, such as misordering of elements
cobalt and nickel, cobalt being heavier but preceding nickel in the proper
ordering based on atomic number not atomic weight. Equally as important, no
understanding of nuclear structure can be successful unless we can explain the
variation in nuclear properties from one isotope to another; before we can
measure such properties, we must determine which isotopes are present and
simultaneously attempt to separate them from one another for experimental
investigations.

To determine the nuclear masses and relative abundances in a sample of
ordinary matter, which even for a pure element may be a mixture of different
isotopes, we must have a way to separate the isotopes from one another by their
masses. The mere separation of isotopes does not require an instrument of great
sensitivity—neighboring isotopes of medium-weight nuclei differ in mass by
about 1%. To measure masses to precisions of order 10~° requires instruments of
much greater sophistication, known as mass spectroscopes. The separated masses
may be focused to make an image on a photographic plate, in which case the
instrument is called a spectrograph; or the masses may pass through a detecting
slit and be recorded electronically (as a current, for instance), in which case we
would have a spectrometer. A schematic diagram of a typical mass spectrograph
is shown in Figure 3.13.

All mass spectroscopes begin with an ion source, which produces a beam of
ionized atoms or molecules. Often a vapor of the material under study is
bombarded with electrons to produce the ions; in other cases the ions can be
formed as a result of a spark discharge between electrodes coated with the
material. Ions emerging from the source have a broad range of velocities, as
might be expected for a thermal distribution, and of course many different
masses might be included.

The next element is a velocity selector, consisting of perpendicular electric and
magnetic fields. The E field would exert a force gE that would tend to divert the
ions upward in Figure 3.13; the B field would exert a downward force guvB. Tons
pass through undeflected if the forces cancel, for which

qE = quB
E (3.19)
‘"B

The final element is a momentum selector, which is essentially a uniform
magnetic field that bends the beam into a circular path with radius r determined
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Figure 3.13 Schematic diagram of mass spectrograph. An ion source produces
a beam with a thermal distribution of velocities. A velocity selector passes only
those ions with a particular velocity (others being deflected as shown), and
momentum selection by a uniform magnetic field permits identification of individual
masses.
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by the momentum:

mv = qBr
= mv (3.20)
qB

Since g, B, and v are uniquely determined, each different mass m appears at a
particular r. Often the magnetic fields of the velocity and momentum selectors
are common, in which case

qrB?
E

To determine masses to one part in 105, we must know all quantities in
Equation 3.21 to that precision, which hardly seems possible. In practice we
could calibrate for one particular mass, and then determine all masses by relative
measurements. The fixed point on the atomic mass scale is >C, which is taken to
be exactly 12.000000 u. To determine the mass of another atom, such as 'H, we
would need to make considerable changes in E and B, and it is perhaps
questionable whether the calibration would be valid to one part in 10° over such
a range. It would be preferable to measure the smaller difference between two
nearly equal masses. For example, let us set the apparatus for mass 128 and
measure the difference between the molecular masses of C4H,, (nonane) and
C,oH; (naphthalene). This difference is measured to be A = 0.09390032 +
0.00000012 u. Neglecting corrections for the difference in the molecular binding
energies of the two molecules (which is of the order of 10~° u), we can write

A= m(C9H20) - m(C10H8) =12m (1H) - m(lzc)

m (3.21)
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Thus
m(*H) = L{m(*C) + A]
= 1.00000000 + 5A
= 1.00782503 + 0.00000001 u

Given this accurate value we could then set the apparatus for mass 28 and
determine the difference between C,H, and N,:

A =m(C,H,) — m(N,) =2m(**C) + 4m(*H) — 2m(**N)
= 0.025152196 + 0.000000030 u

from which we find:
m(*N) = m(**C) + 2m(*H) — 1A = 14.00307396 + 0.00000002 u

This system of measuring small differences between close-lying masses is
known as the mass doublet method, and you can see how it gives extremely
precise mass values. Notice in particular how the 1 part in 10® uncertainties in
the measured A values give uncertainties in the deduced atomic masses of the
order of 1 part in 108 or 10°.

It is also possible to determine mass differences by measuring the energies of
particles in nuclear reactions. Consider the nuclear reaction x + X - y + Y, in
which a projectile x is incident on a stationary target X. By measuring the kinetic
energies of the reacting particles, we can determine the difference in masses,
which is known as the Q value of the reaction:

Q = [m(x) + m(X) = m(y) — m(Y)]<c? (3.22)

(We consider reaction Q values in detail in Section 11.2.) For example, consider
the reaction 'H + N —!2N +3H. From mass doublet measurements we know
that m(*H) = 1.007825 u, m(**N) = 14.003074 u, and m(*H) = 3.016049 u.
The measured Q value is —22.1355 + 0.0010 MeV. We thus deduce

m(N) = m(*H) + m(*N) — m(*H) — Q/¢?
12.018613 + 0.000001 u

It

The main contribution to the uncertainty of the deduced mass comes from the
Q value; the 'H, *H, and *N masses are known to much greater precision. The
nuclide >N is unstable and decays with a half-life of only 0.01 s, which is far too
short to allow its mass to be measured with a mass spectrometer. The nuclear
reaction method allows us to determine the masses of unstable nuclides whose
masses cannot be measured directly.

Nuclide Abundances The mass spectrometer also permits us to measure the
relative abundances of the various isotopes of an element. Measuring the current
passing through an exit slit (which replaces the photographic plate of Figure 3.13)
as we scan the mass range by varying £ or B, we can produce results such as
those shown in Figure 3.14. From the relative areas of the peaks, we can
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Figure 3.14 A mass-spectrum analysis of krypton. The ordinates for the peaks at
mass positions 78 and 80 should be divided by 10 to show these peaks in their true
relation to the others.

determine the abundances of the stable isotopes of krypton:

BKr  0.356% BKr 11.5%
OKr  227% 84Kr 57.0%
2Kr 11.6% %Kr 17.3%

The masses that do not appear in the scan (7°Kr, #Kr, 8°Kr, plus those below
8Kr and above 3¢Kr) are radioactive and are not present in natural krypton. A
typical sample of natural krypton would consist of a mixture of the six stable
isotopes with the above relative composition. If we add the measured masses of
the six stable isotopes with the abundances as relative weighting factors, we can
compute the “average” atomic mass of krypton

m = 0.00356m ("*Kr) + 0.0227m(*Kr) + - --
=838u

which is identical with the accepted atomic mass of Kr, such as is normally given
in the periodic table of the elements.

Separated Isotopes If we set the mass spectrometer on a single mass and collect
for a very long time, we can accumulate a large quantity of a particular isotope,
enough to use for laboratory experiments. Some mass spectrometers are designed
to process large quantities of material (often at the expense of another character-
istic of the equipment, such as its ability to resolve nearby masses as in Figure
3.14); the isotope separation facility at Oak Ridge National Laboratory is an
example. Separated isotopes, which can be purchased from these facilities, are
used for an enormous variety of experiments, not only in nuclear physics, where
work with separated isotopes enables us to measure specific properties such as
cross sections associated with a particular isotope, but also in other fields
including chemistry or biology. For example, we can observe the ingestion of
nutrients by plants using stable isotopes as an alternative to using radioactive
tracers. Ordinary carbon is about 99% '2C and 1% *C; nitrogen is 99.6% N
and 0.4% '*N. If we surround a plant with an atmosphere of CO, made from
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13C, and if we use fertilizers made with >N instead of *N, we can then study
how these isotopes are incorporated into the plant. The longest-lived radioactive
isotope of nitrogen has a half-life of 10 min; thus, long-term studies with
radioactive tracers would not be possible, and in addition radioactive decays
could adversely affect the plant and the personnel who must care for them.

Laser Isotope Separation A completely different technique for separating iso-
topes takes advantage of the extremely sharp (that is, monochromatic) beams
available from lasers. As discussed in the last section, the optical radiations of
different isotopes of the same element do not have exactly the same energy; the
differences in nuclear size cause small variations in the transition energies, called
the isotope shift. Laser beams are sufficiently sharp so that they can be tuned to
excite electrons in one isotope of a mixture of isotopes but not in the others. A
schematic representation of the process is shown in Figure 3.15. A beam of
neutral atoms passes through a laser beam, which is tuned so that electrons in the
desired isotope (but not in the others) will absorb the radiation and make a
transition to a particular excited state. A second laser beam is set to a wavelength
that corresponds to ionization of the excited atoms. The final energy states of the
free electron are continuous rather than quantized, and hence the second laser
should have a broad energy profile; this will not result in the ionization of the
unwanted isotopes because only those that have been excited by the first laser
have electrons in the excited state. After passing through the second laser, the
beam consists of ionized atoms of one isotope and neutral atoms of all the
others; the ionized atoms can be removed from the beam by an electric field and
collected.
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3.3 NUCLEAR BINDING ENERGY

The mass energy myc? of a certain nuclide is its atomic mass energy m ¢ less
the total mass energy of Z electrons and the total electronic binding energy:
z
myc? = myc? — Zme* + Y B, (3.23)
i=1
where B, is the binding energy of the ith electron. Electronic binding energies are
of order 10-100 keV in heavy atoms, while atomic mass energies are of order
A % 1000 MeV; thus to a precision of about 1 part in 10® we can neglect the last
term of Equation 3.23. (Even this 10~ precision does not affect measurements in
nuclear physics because we usually work with differences in mass energies, such
as in determining decay or reaction energies; the effects of electron binding
energies tend to cancel in these differences.)
The binding energy B of a nucleus is the difference in mass energy between a
nucleus 4X, and its constituent Z protons and N neutrons:

B={Zm, + Nm, - [m("X) = Zm_|} c? (3.24)

where we have dropped the subscript from m ,—from now on, unless we indicate
otherwise, we shall always be dealing with atomic masses.

Grouping the Z proton and electron masses into Z neutral hydrogen atoms,
we can rewrite Equation 3.24 as

B = [Zm("H) + Nm, — m("X)| (3.25)

With the masses generally given in atomic mass units, it is convenient to include
the unit conversion factor in ¢2, thus: ¢? = 931.50 MeV /u.

We occasionally find atomic mass tables in which, rather than m(“X), what is
given is the mass defect A = (m — A)c?. Given the mass defect, it is possible to
use Equation 3.25 to deduce the atomic mass.

Other useful and interesting properties that are often tabulated are the neutron
and proton separation energies. The neutron separation energy S, is the amount of
energy that is needed to remove a neutron from a nucleus 4X , equal to the
difference in binding energies between 24X, and 4} X, _;:

Sy = B(I%XN) - B(A_ZlXN—l)
= [m(12Xyo1) = m(4Xy) + my]c? (3.26)

In a similar way we can define the proton separation energy S, as the energy
needed to remove a proton:

Sp = B(/Z‘XN) - B(%:}XN)
= [m(a1xy) = m(3X,) + m('H)] (3.27)

The hydrogen mass appears in this equation instead of the proton mass, since we
are always working with atomic masses; you can see immediately how the Z
electron masses cancel from Equations 3.26 and 3.27.

The neutron and proton separation energies are analogous to the ionization
energies in atomic physics—they tell us about the binding of the outermost or
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Table 3.1 Some Mass Defects and Separation Energies

Nuclide A (MeV) S, (MeV) S, (MeV)
%0 —4.737 15.66 12.13
170 -0810 4.14 13.78
g +1.952 16.81 : 0.60
0Ca —34.847 15.64 8.33
Ca —35.138 8.36 8.89
41gc —28.644 16.19 1.09
208 pp —21.759 7.37 8.01
209pp —17.624 3.94 8.15
20985 —18.268 7.46 3.80

valence nucleons. Just like the atomic ionization energies, the separation energies
show evidence for nuclear shell structure that is similar to atomic shell structure.
We therefore delay discussion of the systematics of separation energies until we
discuss nuclear models in Chapter 5. Table 3.1 gives some representative values
of mass defects and separation energies.

As with many other nuclear properties that we will discuss, we gain valuable
clues to nuclear structure from a systematic study of nuclear binding energy.
Since the binding energy increases more or less linearly with A, it is general
practice to show the average binding energy per nucleon, B/A, as a function of
A. Figure 3.16 shows the variation of B/A with nucleon number. Several
remarkable features are immediately apparent. First of all, the curve is relatively
constant except for the very light nuclei. The average binding energy of most
nuclei is, to within 10%, about 8 MeV per nucleon. Second, we note that the
curve reaches a peak near 4 = 60, where the nuclei are most tightly bound. This
suggests we can “gain” (that is, release) energy in two ways—below A = 60, by
assembling lighter nuclei into heavier nuclei, or above A4 = 60, by breaking
heavier nuclei into lighter nuclei. In either case we “climb the curve of binding
energy”’ and liberate nuclear energy; the first method is known as nuclear fusion
and the second as nuclear fission. These important subjects are discussed in
Chapters 13 and 14.

Attempting to understand this curve of binding energy leads us to the
semiempirical mass formula, in which we try to use a few general parameters to
characterize the variation of B with A.

The most obvious term to include in estimating B/A is the constant term,
since to lowest order B oc A. The contribution to the binding energy from this
“volume” term is thus B = a,A4 where a, is a constant to be determined, which
should be of order 8 MeV. This linear dependence of B on A is in fact somewhat
surprising, and gives us our first insight into the properties of the nuclear force. If
every nucleon attracted all of the others, then the binding energy would be
proportional to A(4 — 1), or roughly to 42. Since B varies linearly with A4, this
suggests that each nucleon attracts only its closest neighbors, and not all of the
other nucleons. From electron scattering we learned that the nuclear density is
roughly constant, and thus each nucleon has about the same number of neigh-
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Figure 3.16 The binding energy per nucleon.

bors; each nucleon thus contributes roughly the same amount to the binding
energy. ‘

An exception to the above argument is a nucleon on the nuclear surface, which
is surrounded by fewer neighbors and thus less tightly bound than those in the
central region. These nucleons do not contribute to B quite as much as those in
the center, and thus B = a4 overestimates B by giving full weight to the surface
nucleons. We must therefore subtract from B a term proportional to the nuclear
surface area. The surface area of the nucleus is proportional to R* or to A>3,
since R « A'/3. Thus the surface nucleons contribute to the binding energy a
term of the form —a 4%/,

Our binding energy formula must also include the Coulomb repulsion of the
protons, which likewise tends to make the nucleus less tightly bound. Since each
proton repels all of the others, this term is proportional to Z(Z — 1), and we may
do an exact calculation, assuming a uniformly charged sphere, to obtain
— 3(e?/4meyRy)Z(Z — 1)/A"° where the negative sign implies a reduction in
binding energy. The constants evaluate to 0.72 MeV with R, = 1.2 fm; we can
allow this constant to be adjustable by replacing it with a general Coulomb
constant a..

We also note, from our study of the distribution of stable and radioactive
isotopes (Figure 1.1), that stable nuclei have Z = 4 /2. (The explanation for this
effect will come from our discussion of the shell model in Chapter 5.) If our
binding energy formula is to be realistic in describing the stable nuclei that are
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actually observed, it must take this effect into account. (Otherwise it would allow
stable isotopes of hydrogen with hundreds of neutrons!) This term is very
important for light nuclei, for which Z = A4 /2 is more strictly observed. For
heavy nuclei, this term becomes less important, because the rapid increase in the
Coulomb repulsion term requires additional neutrons for nuclear stability. A
possible form for this term, called the symmetry term because it tends to make
the nucleus symmetric in protons and neutrons, is —ag,,(4 — 2Z)%/A which
has the correct form of favoring nuclei with Z = 4 /2 and reducing in impor-
tance for large A.

Finally, we must include another term that accounts for the tendency of like
nucleons to couple pairwise to especially stable configurations. When we have an
odd number of nucleons (odd Z and even N, or even Z and odd N), this term
does not contribute. However, when both Z and N are odd, we gain binding
energy by converting one of the odd protons into a neutron (or vice versa) so that
it can now form a pair with its formerly odd partner. We find evidence for this
pairing force simply by looking at the stable nuclei found in nature—there are
only four nuclei with odd N and Z (*H, °Li, 1°B, 1*N), but 167 with even N and
Z. This pairing energy 8 is usually expressed as +a,4~>* for Z and N even,
—a,A7>"* for Z and N odd, and zero for 4 odd.

Combining these five terms we get the complete binding energy:

B=a,A—-aA*?-a.Z(Z-1)A"13
(4-22)°

and using this expression for B we have the semiempirical mass formula:

M(Z,A) = Zm(*H) + Nm, — B(Z, A)/c* (3.29)
The constants must be adjusted to give the best agreement with the experimental
curve of Figure 3.16. A particular choice of a, = 15.5 MeV, a, = 16.8 MeV,
a.= 072 MeV, a,, =23 MeV, a, = 34 MeV, gives the result shown in Figure
3.17, which reproduces the observed behavior of B rather well.

The importance of the semiempirical mass formula is not that it allows us to
predict any new or exotic phenomena of nuclear physics. Rather, it should be
regarded as a first attempt to apply nuclear models to understand the systematic
behavior of a nuclear property, in this case the binding energy. It includes several
different varieties of nuclear models: the liquid-drop model, which treats some of
the gross collective features of nuclei in a way similar to the calculation of the
properties of a droplet of liquid (indeed, the first three terms of Equation 3.28
would also appear in a calculation of the energy of a charged liquid droplet), and
the shell model, which deals more with individual nucleons and is responsible for
the last two terms of Equation 3.28.

For constant A4, Equation 3.29 represents a parabola of M vs. Z. The parabola
will be centered about the point where Equation 3.29 reaches a minimum. To

compare this result with the behavior of actual nuclei, we must find the mini-
mum, where dM/3Z = 0:

[mn - m(lH)] +a,A73 + 4a
min 2a, A7V + 8a A7

5 (3.28)

sym

z

(3.30)
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s6Ba

49in

52Te 53l

Figure 3.18 Mass chains for A= 125 and A = 128. For A = 125, note how the
energy differences between neighboring isotopes increase as we go further from
the stable member at the energy minimum. For A = 128, note the effect of the
pairing term; in particular, 281 can decay in either direction, and it is energetically
possible for ?2Te to decay directly to >2Xe by the process known as double B
decay.
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With a, = 0.72 MeV and a,, = 23 MeV, it follows that the first two terms in
the numerator are negligible, and so

A 1
Zm'm= N 1 42/3
21+ 44%%a /a

(3.31)

sym

For small 4,7, = A/2 as expected, but for large 4, Z_, < A/2. For heavy
nuclei, Equation 3.31 gives Z/A4 = 041, consistent with observed values for
heavy stable nuclei.

Figure 3.18 shows a typical odd-4 decay chain for A = 125, leading to the
stable nucleus at Z = 52. The unstable nuclei approach stability by converting a
neutron into a proton or a proton into a neutron by radioactive 8 decay. Notice
how the decay energy (that is, the mass difference between neighboring isobars)
increases as we go further from stability. For even A, the pairing term gives two
parabolas, displaced by 26. This permits two unusual effects, not seen in odd-4
decays: (1) some odd-Z, odd-N nuclei can decay in either direction, converting a
neutron to a proton or a proton to a neutron; (2) certain double 8 decays can
become energetically possible, in which the decay may change 2 protons to 2
neutrons. Both of these effects are discussed in Chapter 9.

3.4 NUCLEAR ANGULAR MOMENTUM AND PARITY

In Section 2.5 we discussed the coupling of orbital angular momentum ¢ and spin
s to give total angular momentum j. To the extent that the nuclear potential is
central, € and s (and therefore j) will be constants of the motion. In the quantum
mechanical sense, we can therefore label every nucleon with the corresponding
quantum numbers 7, s, and j. The total angular momentum of a nucleus
containing A nucleons would then be the vector sum of the angular momenta of
all the nucleons. This total angular momentum is usually called the nuclear spin
and is represented by the symbol I. The angular momentum I has all of the
usual properties of quantum mechanical angular momentum vectors: I2 =
RI(I+1) and I, =mh (m= —1,..., +I). For many applications involving
angular momentum, the nucleus behaves as if it were a single entity with an
intrinsic angular momentum of /. In ordinary magnetic fields, for example, we
can observe the nuclear Zeeman effect, as the state I splits up into its 27 + 1
individual substates m = —I, —I + 1,...,I — 1, I. These substates are equally
spaced, as in the atomic normal Zeeman effect. If we could apply an incredibly
strong magnetic field, so strong that the coupling between the nucleons were
broken, we would see each individual ; splitting into its 2j + 1 substates.
Atomic physics also has an analogy here: when we apply large magnetic fields we
can break the coupling between the electronic £ and s and separate the 2£+ 1
components of £ and the 25 + 1 components of s. No fields of sufficient strength
to break the coupling of the nucleons can be produced. We therefore observe the
behavior of I as if the nucleus were only a single “spinning” particle. For this
reason, the spin (total angular momentum) I and the corresponding spin quan-
tum number I are used to describe nuclear states.

To avoid confusion, we will always use I to denote the nuclear spin; we will
use j to represent the total angular momentum of a single nucleon. It will often
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be the case that a single valence particle determines all of the nuclear properties;
in that case, I = j. In other cases, it may be necessary to consider two valence
particles, in which case I = j; + j,, and several different resultant values of I
may be possible. Sometimes the odd particle and the remaining core of nucleons
each contribute to the angular momentum, with I = j_ . e + Jeore-

One important restriction on the allowed values of I comes from considering
the possible z components of the total angular momentum of the individual
nucleons. Each j must be half-integral (3, 3, 3,...) and thus its only possible z
components are likewise half-integral (+34, +34, +3h,...). If we have an even
number of nucleons, there will be an even number of half-integral components,
with the result that the z component of the total I can take only integral values.
This requires that I itself be an integer. If the number of nucleons is odd, the
total z component must be half-integral and so must the total I. We therefore
require the following rules:

0dd-4 nuclei: I = half-integral
even-4 nuclei: I = integral

The measured values of the nuclear spin can tell us a great deal about the
nuclear structure. For example, of the hundreds of known (stable and radioac-
tive) even-Z, even-N nuclei, all have spin-0 ground states. This is evidence for the
nuclear pairing force we discussed in the previous section; the nucleons couple
together in spin-0 pairs, giving a total I of zero. As a corollary, the ground state
spin of an odd-A nucleus must be equal to the j of the odd proton or neutron.
We discuss this point further when we consider the nuclear shell model in
Chapter 5.

Along with the nuclear spin, the parity is also used to label nuclear states. The
parity can take either + (even) or — (odd) values. If we knew the wave function
of every nucleon, we could determine the nuclear parity by multiplying together
the parities of each of the 4 nucleons, ending with a result = either + or —:
7 = mm, --- 7, However, in practice no such procedure is possible, for we
generally cannot assign a definite wave function of known parity to every
nucleon. Like the spin I, we regard the parity = as an “overall” property of the
whole nucleus. It can be directly measured using a variety of techniques of
nuclear decays and reactions. The parity is denoted by a + or — superscript to
the nuclear spin, as I”. Examples are 0%, 27, 17, 3. There is no direct
theoretical relationship between I and 7; for any value of I, it is possible to have
either # = + orm = —.

3.5 NUCLEAR ELECTROMAGNETIC MOMENTS

Much of what we know about nuclear structure comes from studying not the
strong nuclear interaction of nuclei with their surroundings, but instead the much
weaker electromagnetic interaction. That is, the strong nuclear interaction estab-
lishes the distribution and motion of nucleons in the nucleus, and we probe that
distribution with the electromagnetic interaction. In doing so, we can use
electromagnetic fields that have less effect on the motion of nucleons than the
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strong force of the nuclear environment; thus our measurements do not seriously
distort the object we are trying to measure.

Any distribution of electric charges and currents produces electric and mag-
netic fields that vary with distance in a characteristic fashion. It is customary to
assign to the charge and current distribution an electromagnetic multipole mo-
ment associated with each characteristic spatial dependence—the 1/r? electric
field arises from the net charge, which we can assign as the zeroth or monopole
moment; the 1/r3 electric field arises from the first or dipole moment; the 1/r*
electric field arises from the second or quadrupole moment, and so on. The
magnetic multipole moments behave similarly, with the exception of the mono-
pole moment; as far as we know, magnetic monopoles either do not exist or are
exceedingly rare, and thus the magnetic monopole field (o 1/r%) does not
contribute. Electromagnetic theory gives us a recipe for calculating the various
electric and magnetic multipole moments, and the same recipe can be carried
over into the nuclear regime using quantum mechanics, by treating the multipole
moments in operator form and calculating their expectation values for various
nuclear states. These expectation values can then be directly compared with the
experimental values we measure in the laboratory. Techniques for measurmg the
nuclear moments are discussed in Chapter 16.

The simplest distributions of charges and currents give only the lowest order
multipole fields. A spherical charge distribution gives only a monopole (Coulomb)
field; the higher order fields all vanish. A circular current loop gives only a
magnetic dipole field. Nature has not been arbitrary in the construction of nuclei;
if a simple, symmetric structure (consistent with the nuclear interaction) is
possible, then nuclei tend to acquire that structure. It is therefore usually
necessary to measure or calculate only the lowest order multipole moments to
characterize the electromagnetic properties of the nucleus.

Another restriction on the multipole moments comes about from the symmetry
of the nucleus, and is directly related to the parity of the nuclear states. Each
electromagnetic multipole moment has a parity, determined by the behavior of
the multipole operator when r — —r. The parity of electric moments is (—1)%,
where L is the order of the moment (L = 0 for monopole, L = 1 for dipole,
L = 2 for quadrupole, etc.); for magnetic moments the parity is (— 1)~*!, When
we compute the expectation value of a moment, we must evaluate an integral of
the form [y*@y dv, where O is the appropriate electromagnetic operator. The
parity of i itself is not important; because { appears twice in the integral,
whether ¢ — +¢ or ¢ = —y¢ does not change the integrand. If, however, ¢ has
odd parity, then the integrand is an odd function of the coordinates and must
vanish identically. Thus all odd-parity static multipole moments must vanish—elec-
tric dipole, magnetic quadrupole, electric octupole (L = 3), and so on.

The monopole electric moment is just the net nuclear charge Ze. The next
nonvanishing moment is the magnetic dipole moment u. A circular loop carrying
current / and enclosing area A4 has a magnetic moment of magnitude |p| = i4; if
the current is caused by a charge e, moving with speed v in a circle of radius r
(with period 27r/v), then

e evr

v (3.32)

= — 2 = — =
i (277r/v)w 2 2m
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where |£] is the classical angular momentum mor. In quantum mechanics, we
operationally define the observable magnetic moment to correspond to the
direction of greatest component of £; thus we can take Equation 3.32 directly
into the quantum regime by replacing ¢ with the expectation value relative to the
axis where it has maximum projection, which is m k& with m,= +¢. Thus

eh p 3
p=o (3.33)
where now ¢ is the angular momentum quantum number of the orbit.

The quantity eh/2m is called a magneton. For atomic motion we use the
electron mass and obtain the Bohr magneton py = 5.7884 X 10~ ° eV /T. Putting
in the proton mass we have the nuclear magneton p = 3.1525 X 10~ eV /T.
Note that p, << pp owing to the difference in the masses; thus under most
circumstances atomic magnetism has much larger effects than nuclear magnetism.
Ordinary magnetic interactions of matter (ferromagnetism, for instance) are
determined by atomic magnetism; only in very special circumstances can we
observe the effects of nuclear magnetism (see Chapter 16).

We can rewrite Equation 3.33 in a more useful form:

p=2gLuy (3.34)

where g, is the g factor associated with the orbital angular momentum #. For
protons g,= 1; because neutrons have no electric charge, we can use Equation
3.34 to describe the orbital motion of neutrons if we put g,= 0.

We have thus far been considering only the orbital motion of nucleons.
Protons and neutrons, like electrons, also have intrinsic or spin magnetic mo-
ments, which have no classical analog but which we write in the same form as
Equation 3.34:

p= gsSH'N ) (3'35)

where s = 1 for protons, neutrons, and electrons. The quantity g, is known as
the spin g factor and is calculated by solving a relativistic quantum mechanical
equation. For a spin- 1 point particle such as the electron, the Dirac equation
gives g, = 2, and measurement is quite consistent with that value for the
electron: g, = 2.0023. The difference between g; and 2 is quite small and can be
very accurately computed using the higher order corrections of quantum elec-
trodynamics. On the other hand, for free nucleons, the experimental values are
far from the expected value for point particles:

proton: g, = 5.5856912 + 0.0000022
neutron: g, = —3.8260837 + 0.0000018

(The measured magnetic moments, in nuclear magnetons, are just half the g,
factors.) Not only is the proton value far from the expected value of 2 for a point
particle, but the uncharged neutron has a nonzero magnetic moment! Here is
perhaps our first evidence that the nucleons are not elementary point particles
like the electron, but have an internal structure; the internal structure of the
nucleons must be due to charged particles in motion, whose resulting currents
give the observed spin magnetic moments. It is interesting to note that g for the
proton is greater than its expected value by about 3.6, while g_ for the neutron is
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Table 3.2 Sample Values of Nuclear Magnetic
Dipole Moments

Nuclide p(eN)

n —1.9130418
p +2.7928456
H (D) +0.8574376
70 —1.89379
STFe +0.09062293
Co +4.733

2 Nb +6.1705

All values refer to the nuclear ground states; uncertainties
are typically a few parts in the last digit. For a complete
tabulation, see V. S. Shirley, in Table of Isotopes (Wiley: New
York, 1978), Appendix VII.

less than its expected value (zero) by roughly the same amount. Formerly these
differences between the expected and measured g, values were ascribed to the
clouds of # mesons that surround nucleons, with positive and neutral
o mesons in the proton’s cloud, and negative and neutral 7 mesons in the
neutron’s cloud. The equal and opposite contributions of the meson cloud are
therefore not surprising. In present theories we consider the nucleons as com-
posed of three quarks; adding the magnetic moments of the quarks gives the
nucleon magnetic moments directly (see Chapter 18).

In nuclei, the pairing force favors the coupling of nucleons so that their orbital
angular momentum and spin angular momentum each add to zero. Thus the
paired nucleons do not contribute to the magnetic moment, and we need only
consider a few valence nucleons. If this were not so, we might expect on
statistical grounds alone to see a few heavy nuclei with very large magnetic
moments, perhaps tens of nuclear magnetons. However, no nucleus has been
observed with a magnetic dipole moment larger than about 6p..

Table 3.2 gives some representative values of nuclear magnetic dipole mo-
ments. Because of the pairing force, we can analyze these magnetic moments to
learn about the nuclear structure. In Chapter 4, we discuss the magnetic moment
of the deuteron, and in Chapter 5 we consider how nuclear models predict the
magnetic moments of heavier nuclei. )

The next nonvanishing moment is the electric quadrupole moment. The
quadrupole moment eQ of a classical point charge e is of the form e(3z% — r?).
If the particle moves with spherical symmetry, then (on the average) z2 = x% =
y*=r2/3 and the quadrupole moment vanishes. If the particle moves in a
classical flat orbit, say in the xy plane, then z = 0 and Q = —r2. The quadru-
pole moment in quantum mechanics is

eQ = ejxl/*(Bzz — )y do (3.36)

for a single proton; for an orbiting neutron, Q = 0. If |¢|> is spherically
symmetric, then Q = 0. If |{/|? is concentrated in the xy plane (z = 0), then
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Table 3.3 Some Values of Nuclear Electric
Quadrupole Moments

Nuclide Q (b)
H(D) +0.00288
170 —0.02578
$Co +0.40

% Cu —0.209
133Cs —0.003
161Dy +2.4

1761 y +8.0
20984 -0.37

All values refer to nuclear ground states; uncertainties
are typically a few parts in the last digit. For a complete
tabulation, see V. S. Shirley, in Table of Isotopes (Wiley:
New York, 1978), Appendix VIIL.

Q ~ —(r?*), while if |¢|? is concentrated along the z axis (z = r), we might
have Q ~ +2(r?). Here (r?) is the mean-square radius of the orbit. Once again
the pairing force is helpful, for if the paired nucleons move in spherically
symmetric orbits, they do not contribute to Q. We might therefore expect that for
many nuclei, the quadrupole moment can be estimated from the valence nucleon,
which we can assume to orbit near the surface, so r = Ry4'/%. We therefore
estimate |eQ| < eR2A%?, which ranges from about 6 X 1073° em® for light
nuclei to 50 X 107* em? for heavy nuclei. The unit of 10 ** m? is used
frequently in nuclear reaction studies for cross sections, and is known as a barn
(b). This unit is also convenient for measuring quadrupole moments; thus the
expected maximum is from 0.06 to 0.5 eb. As you can see from Table 3.3, many
nuclei do fall within that range, but several, especially in the rare-earth
region, are far outside. Here the quadrupole moment is giving important informa-
tion— the model of the single particle cannot explain the large observed quadru-
pole moments. Most or all of the protons must somehow collectively contribute
to have such a large Q. The assumption of a spherically symmetric core of paired
nucleons is not valid for these nuclei. The core in certain nuclei can take on a
static nonspherical shape that can give a large quadrupole moment. The proper-
ties of such strongly deformed nuclei are discussed in Chapter 5.

3.6 NUCLEAR EXCITED STATES

Just as we learn about atoms by studying their excited states, we study nuclear
structure in part through the properties of nuclear excited states. (And like
atomic excited states, the nuclear excited states are unstable and decay rapidly to
the ground state.) In atoms, we make excited states by moving individual
electrons to higher energy orbits, and we can do the same for individual
nucleons; thus the excited states can reveal something about the orbits of
individual nucleons. We have already several times in this chapter referred to the
complementary single-particle and collective structure of nuclei—we can also
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Figure 3.19 Some sample level schemes showing the excited states below
2 MeV. Some nuclei, such as 2°°Bi, show great simplicity, while others, such as
82Tz show great complexity. There is a regularity associated with the levels of '"°Os
that is duplicated in all even-Z, even-N nuclei in the range 150 < A < 190. Struc-
tures similar to 2°Te are found in many nuclei in the range 50 < A < 150.

produce excited states by adding energy to the core of paired nucleons. This
energy can take the form of collective rotation or vibrations of the entire core, or
it might even break one of the pairs, thereby adding two additional valence
nucleons.

Part of the goal of nuclear spectroscopy is to observe the possible excited states
and to measure their properties. The experimental techniques available include
all manner of radioactive decay and nuclear reaction studies that we will consider
in detail in subsequent sections. Among the properties we should like to measure
for each excited state are: energy of excitation, lifetime and mode(s) of decay,
spin and parity, magnetic dipole moment, and electric quadrupole moment. With
more than 1000 individual nuclides, each of which may have hundreds of excited
states, the tasks of measuring, tabulating, and interpreting these data are almost
overwhelming.

Figure 3.19 shows some sample ruclear level schemes. A few of the excited
states are identified as originating from excitations of the valence nucleons or the
core; such identifications come about only after the properties listed above have
been measured and have been compared with the predictions of calculations
based on either single particle or collective core excitations, to see which agrees
best with experiment. In subsequent chapters, we will explore the experimental
techniques used to extract this information and nuclear models used to interpret
it. Only through difficult and precise experiments, and through calculations
involving the most powerful computers now available, can we obtain such
detailed interpretations of nuclear structure.
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PROBLEMS

1. Show that the mean-square charge radius of a uniformly charged sphere is
(r?) = 3R?*/5.

2. (a) Derive Equation 3.9. (b) Fill in the missing steps in the derivation of
Equation 3.13 beginning with Equation 3.9.

3. Compute the form factors F(q) for the following charge distributions:

(@) p(r) =pp, r<R (b) p(r) = p, e~ 0D’ /R
=0, r>R

4. A nuclear charge distribution more realistic than the uniformly charged
distribution is the Fermi distribution, p(r) = po{1 + exp[(r — R)/a]} ..
(a) Sketch this distribution and compare with Figure 3.4. (b) Find the value
of a if r = 2.3 fm. (c) What is the significance of the parameter R? (d)
Evaluate (r?) according to this distribution.

5. Why is the electron screening correction, which is a great difficulty for
analyzing electronic X rays, not a problem for muonic X rays?

6. (a) Using a one-electron model, evaluate the energies of the muonic K X
rays in Fe assuming a point nucleus, and compare with the energies shown
in Figure 3.8. (b) Evaluate the correction AE due to the finite nuclear size.
Compare the corrected value with the measured energies.

7. (a) From the known masses of O and >N, compute the difference in
binding energy. (b) Assuming this difference to arise from the difference in
Coulomb energy, compute the nuclear radius of >0 and *N.

8. Given the following mass doublet values (in units of 10~¢ u), compute the
corresponding values for the atomic mass of *'Cl:

m(C,H) — m(*’Cl) = 41922.2 + 0.3
m(C,Dg) — m(*'CIH,) = 123436.5 + 0.1
m(C;H0,) — m(*'Cl,) = 104974.24 + 0.08

Here D =?H, C ="?C, and O ='0. Include in your calculation the effect
of uncertainties in the H, D, O, and C masses.
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Compute the total binding energy and the binding energy per nucleon for
(a) "Li; (b) ®Ne; (c) 3*Fe; (d) *°U.

For each of the following nuclei, use the semiempirical mass formula to
compute the total binding energy and the Coulomb energy: (a) *'Ne;
(b) 'Fe; (c) 2Bi; (d) »Fm.

Compute the mass defects of (a) *2S; (b) 2°F; (c) 2**U.

Given the following mass defects, find the corresponding atomic mass:
(a) ¥Na: —8.418 MeV; (b) '“*Sm: — 81.964 MeV; (c) >°Pu: +50.123 MeV.
Evaluate (a) the neutron separation energies of 'Li, ' Zr, and *°U; (b) the
proton separation energies of °Ne, % Mn, and *Au.

Examine carefully the S, and S, values given in Table 3.1 and draw
conclusions about the strength of the binding of the last proton or neutron
in the mirror pairs (1’0, *’F) and (*'Ca, *'Sc). Try to account for general or
systematic behavior. Compare the nucleon separation energies in nuclei with
identical numbers of protons or neutrons (for example, S, in *O and !"F or
S, in '*O and '70). Extend these systematics by evaluating and tabulating
the S, and S, for “He, *He, °Li and for **Ni, >’Ni, and *’Cu. (Note: Nuclei
with Z or N equal to 2, 8, 20, or 28 have unusual stability. We explore the
reasons for this behavior in Chapter 5.)

Use the semiempirical mass formula to obtain an expression for the
two-neutron separation energy when A > 1. (Hint: A differential method
is far easier than an algebraic one for this problem.) Estimate the size of the
various terms and discuss the 4 dependence. Compare with the following
data for Al and Te:

BAl 31.82 MeV 7Te 18.89 MeV 124Te  16.36 MeV
A1 28.30 MeV 18Te  18.45 MeV 125Te  16.00 MeV
YAl 24.42 MeV 19Te  18.17 MeV 126Te  15.69 MeV
BA1  20.78 MeV 120Te  17.88 MeV 127Te  15.41 MeV
A1 17.16 MeV 2ITe 17.46 MeV 128Te  15.07 MeV
A1 15.19 MeV 12Te  17.04 MeV 19Te  14.86 MeV
3IAl 13.03 MeV 123Te  16.80 MeV B30Te  14.50 MeV

Why do we choose two-neutron, rather than one-neutron, separation en-
ergies for this comparison?

In analogy with the previous problem, use the semiempirical mass formula
to find approximate expressions for the variation of S, with 4 holding Z
constant. Obtain data for several sets of isotopes, plot the data, and
compare with the predictions of the semiempirical mass formula.

The spin-parity of °Be and °B are both 3 . Assuming in both cases that the
spin and parity are characteristic only of the odd nucleon, show how it is
possible to obtain the observed spin-parity of !B (3*). What other spin-
parity combinations could also appear? (These are observed as excited states
of 1°B))

Let’s suppose we can form *He or *H by adding a proton or a neutron to
2H, which has spin equal to 1 and even parity. Let ¢ be the orbital angular
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momentum of the added nucleon relative to the *H center of mass: What
are the possible values of the total angular momentum of *H or *He? Given
that the ground-state parity of *H and *He is even, which of these can be
eliminated? What is the most likely value of the ground-state angular
momentum of >H or 3He? Can you make a similar argument based on
removing a proton or a neutron from “He? (What is the ground-state
spin-parity of “He?) How would you account for the spin-parity of ’Li and
SHe 3 7)?

(a) Consider a neutron as consisting of a proton plus a negative = meson in
an /= 1 orbital state. What would be the orbital magnetic dipole moment
of such a configuration? Express your result as a multiple of the proton’s
magnetic moment. (b) Is it possible to account for the observed neutron
magnetic moment from such a model? Suppose the neutron wave function
consisted of two pieces, one corresponding to a g = 0 “Dirac” neutron and
the other to proton-plus-r meson. What would be the relative sizes of the
two pieces of the wave function? (Assume the proton also to behave like an
ideal Dirac particle.)) (c) Repeat the previous analysis for the proton
magnetic moment; that is, consider the proton as part pure Dirac proton,
plus part Dirac neutron with orbiting positive = meson in /=1 state.
Suppose the proton magnetic moment were to be interpreted as due to the
rotational motion of a positive spherical uniform charge distribution of
radius R spinning about its axis with angular speed w. (a) Show that
i = ewR?/5 by integrating over the charge distribution. (b) Using the
classical relationship between angular momentum and rotational speed,
show that wR? = 5/0.4m. (c) Finally, obtain p = (e/2m)s, which is analo-
gous to Equation 3.32.

Calculate the electric quadrupole moment of a uniformly charged ellipsoid
of revolution of semimajor axis b and semiminor axis a.
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THE FORCE BETWEEN
NUCLEONS

Even before describing any further experiments to study the force between two
nucleons, we can already guess at a few of the properties of the nucleon-nucleon
force:

1. At short distances it is stronger than the Coulomb force; the nuclear force
can overcome the Coulomb repulsion of protons in the nucleus.

2. At long distances, of the order of atomic sizes, the nuclear force is negligibly
feeble; the interactions among nuclei in a molecule can be understood based
only on the Coulomb force.

3. Some particles are immune from the nuclear force; there is no evidence from
atomic structure, for example, that electrons feel the nuclear force at all.

As we begin to do experiments specifically to explore the properties of the
nuclear force, we find several other remarkable properties:

4. The nucleon—-nucleon force seems to be nearly independent of whether the
nucleons are neutrons or protons. This property is called charge indepen-
dence.

5. The nucleon-nucleon force depends on whether the spins of the nucleons are
parallel or antiparallel.

6. The nucleon-nucleon force includes a repulsive term, which keeps the
nucleons at a certain average separation.

7. The nucleon—nucleon force has a noncentral or fensor component. This part
of the force does not conserve orbital angular momentum, which is a
constant of the motion under central forces.

In this chapter we explore these properties in detail, discuss how they are
measured, and propose some possible forms for the basic nucleon—nucleon
interaction.

4.1 THE DEUTERON

A deuteron (*H nucleus) consists of a neutron and a proton. (A neutral atom of
2H is called deuterium.) It is the simplest bound state of nucleons and therefore
gives us an ideal system for studying the nucleon-nucleon interaction. For
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nuclear physicists, the deuteron should be what the hydrogen atom is for atomic
physicists. Just as the measured Balmer series of electromagnetic transitions
between the excited states of hydrogen led to an understanding of the structure of
hydrogen, so should the electromagnetic transitions between the excited states of
the deuteron lead to an understanding of its structure. Unfortunately, there are
no excited states of the deuteron—it is such a weakly bound system that the only
“excited states” are unbound systems consisting of a free proton and neutron.

Binding Energy

The binding energy of the deuteron is a very precisely measured quantity, which
can be determined in three different ways. By spectroscopy, we can directly
determine the mass of the deuteron, and we can use Equation 3.25 to find the
binding energy. Using the mass doublet method described in Section 3.2, the
following determinations have been made (we use the symbol D for 2H):

m(CeH,,) — m(C,Dy) = (9.289710 + 0.000024) X 10~ u
and .
m(CD,,) — m(C,D,) = (84.610626 + 0.000090) X 10~ u.
From the first difference we find, using 1.007825037 u for the 'H mass,
m(*H) = 2.014101789 + 0.000000021 u

and from the second,

m(*H) = 2.014101771 + 0.000000015 u

These precise values are in very good agreement, and using the measured 'H and
neutron masses we can find the binding energy

B = [m(*H) + m(n) — m(*H)| ¢ = 2.22463 + 0.00004 MeV

We can also determine this binding energy directly by bringing a proton and a
neutron together to form ?H and measuring the energy of the y-ray photon that
is emitted:

'H+n->2H+y

The deduced binding energy, which is equal to the observed energy of the photon
less a small recoil correction, is 2.224589 + 0.000002 MeV, in excellent agree-
ment with the mass spectroscopic value. A third method uses the reverse reaction,
called photodissociation,

y+*H->'H+n

in which a y-ray photon breaks apart a deuteron. The minimum y-ray energy that
accomplishes this process is equal to the binding energy (again, corrected for the
recoil of the final products). The observed value is 2.224 + 0.002 MeV, in good
agreement with the mass spectroscopic value.

As we discussed in Section 3.3, the average binding energy per nucleon is about
8 MeV. The deuteron is therefore very weakly bound compared with typical
nuclei. Let’s see how we can analyze this result to study the properties of the
deuteron.
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Figure 4.1 The spherical square-well potential is an approximation to the nuclear
potential. The depth is —V,,, where |}, is deduced to be about 35 MeV. The bound
state of the deuteron, at an energy of about —2 MeV, is very close to the top of the
well.

To simplify the analysis of the deuteron, we will assume that we can represent
the nucleon—nucleon potential as a three-dimensional square well, as shown in
Figure 4.1:

v(ir)= -V, forr <R
=0 for r > R (4.1)

This is of course an oversimplification, but it is sufficient for at least some
qualitative conclusions. Here r represents the separation between the proton and
the neutron, so R is in effect a measure of the diameter of the deuteron. Let’s
assume that the lowest energy state of the deuteron, just like the lowest energy
state of the hydrogen atom, has £= 0. (We justify this assumption later in this
section when we discuss the spin of the deuteron.) If we define the radial part of
Y (r) as u(r)/r, then we can rewrite Equation 2.60 as

S + V(r)u(r) = Eu(r) (4.2)

This expression looks exactly like the one-dimensional Equation 2.4, and the
solutions can be written in analogy with Equations 2.47. For r < R,

u(r) = Asin k,r + Bcos k,r (4.3)
with k, = 2m(E + V,)/h?, and for r > R,
u(r) = Ce k" 4+ Detker (4.4)

with k, = { —2mE/h*. (Remember, E < 0 for bound states.) To keep the wave
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Figure 4.2 The deuteron wave function for R = 2.1 fm. Note how the exponential
joins smoothly to the sine at r = R, so that both u(r) and du/dr are continuous. If
the wave function did not “turn over” inside r = R, it would not be possible to
connect smoothly to a decaying exponential (negative slope) and there would be
no bound state.

function finite for » — oo we must have D = 0, and to keep it finite for r — 0 we
must have B = 0. (¢ depends on u(r)/r; as r - 0, u(r) also must go to zero.)
Applying the continuity conditions on # and du/dr at r = R, we obtain

kycotk,R = —k, (4.5)

This transcendental equation gives a relationship between ¥, and R. From
electron scattering experiments, the rms charge radius of the deuteron is known
to be about 2.1 fm, which provides a reasonable first estimate for R. Solving
Equation 4.5 numerically (see Problem 6 at the end of this chapter) the result is
V, = 35 MeV. This is actually quite a reasonable estimate of the strength of the
nucleon—nucleon potential, even in more complex nuclei. (Note, however, that
the proton and neutron are very likely to be found at separations greater than R;
see Problem 4.)

We can see from Figure 4.1 how close the deuteron is to the top of the well. If
the nucleon-nucleon force were just a bit weaker, the deuteron bound state
would not exist (see Problem 3). We are fortunate that it does, however, because
the formation of deuterium from hydrogen is the first step not only in the
proton-proton cycle of fusion by which our sun makes its energy, but also in the
formation of stable matter from the primordial hydrogen that filled the early
universe. If no stable two-nucleon bound state existed, we would not be here to
discuss it! (For more on the cosmological consequences of the formation of
deuterium in the early universe, see Chapter 19.)

The deuteron wave function is shown in Figure 4.2. The weak binding means
that /(r) is just barely able to “turn over” in the well so as to connect at r = R
with the negative slope of the decaying exponential.

Spin and Parity

The total angular momentum I of the deuteron should have three components:
the individual spins s, and s, of the neutron and proton (each equal to 3), and
the orbital angular momentum ¢ of the nucleons as they move about their
common center of mass:

I=s,+s,+¢ (4.6)
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When we solved the Schrodinger equation for the deuteron, we assumed £= 0 in
analogy with the lowest bound state (the 1s state) in atomic hydrogen. The
measured spin of the deuteron is 7 =1 (how this is measured is discussed in
Chapter 16). Since the neutron and proton spins can be either parallel (for a total
of 1) or antiparallel (for a total of zero), there are four ways to couple s,, s, and
£ to get a total 7 of 1:

(@) s, and s, parallel with £= 0,
(b) s, and s, antiparallel with /= 1,
(¢) s, and s, parallel with /=1,
(d) s, and s, parallel with /= 2.

Another property of the deuteron that we can determine is its parity (even or
odd), the behavior of its wave function when r — —r (see Section 2.6). By
studying the reactions involving deuterons and the property of the photon
emitted during the formation of deuterons, we know that its parity is even. In
Section 2.6 we discussed that the parity associated with orbital motion is (—1)7,
even parity for £= 0 (s states) and /= 2 (d states) and odd parity for /=1 (p
states). The observed even parity allows us to eliminate the combinations of spins
that include ¢= 1, leaving /= 0 and /= 2 as possibilities. The spin and parity of
the deuteron are therefore consistent with £= 0 as we assumed, but of course we
cannot yet exclude the possibility of /= 2.

Magnetic Dipole Moment

In Section 3.5 we discussed the spin and orbital contributions to the magnetic
dipole moment. If the /= 0 assumption is correct, there should be no orbital
contribution to the magnetic moment, and we can assume the total magnetic
moment to be simply the combination of the neutron and proton magnetic
moments:

Bo=pat B,
_ 8sntN gsp"l‘N
= s, + 7 s,
where g, = —3.826084 and g,, = 5.585691. As we did in Section 3.5, we take

the observed magnetic moment to be the z component of p when the spins have
their maximum value (+ $4):

(4.7)

%H‘N(gsn + g.sp) (48)
0.879804 py

B

The observed value is 0.8574376 + 0.0000004 pny, in good but not quite exact
agreement with the calculated value. The small discrepancy can be ascribed to
any of a number of factors, such as contributions from the mesons exchanged
between the neutron and proton; in the context of the present discussion, we can
assume the discrepancy to arise from a small mixture of d state (£/= 2) in the
deuteron wave function:

v=ay(£{=0)+aygy(¢{=2) (4.9)
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Calculating the magnetic moment from this wave function gives
p=ap(f=0)+aip(¢/=2) (4.10)
where p(£=0) is the value calculated in Equation 4.8 and p(¢=2) = ;(3 — g,
— g,y 1s the value calculated for a d state. The observed value is consistent
with a? = 0.96, a} = 0.04; that is, the deuteron is 96% #= 0 and only 4% /= 2.

The assumption of the pure /= 0 state, which we made in calculating the well
depth, is thus pretty good but not quite exact.

Electric Quadrupole Moment

The bare neutron and proton have no electric quadrupole moment, and so any
measured nonzero value for the quadrupole moment must be due to the orbital
motion. Thus the pure /= 0 wave function would have a vanishing quadrupole
moment. The observed quadrupole moment is

Q0 = 0.00288 + 0.00002 b

which, while small by comparison with many other nuclei, is certainly not zero.

The mixed wave function of Equation 4.9, when used as in Equation 3.36 to
evaluate Q, gives two contributions, one proportional to a3 and another propor-
tional to the cross-term a.a,. Performing the calculation we obtain

V2 1
Q= Easad<r2>sd - _2_60§<r2>dd (4.11)

where (r?),; = [r’R(r)Ry(r)r?dr is the integral of r? over the radial wave
functions; (r?), is similarly defined. To calculate Q we must know the deuteron
d-state wave function, which is not directly measurable. Using the realistic
phenomenological potentials discussed later in this chapter gives reasonable
values for Q with d-state admixtures of several percent, consistent with the value
of 4% deduced from the magnetic moment.

This good agreement between the d-state admixtures deduced from p and Q
should be regarded as a happy accident and not taken too seriously. In the case
of the magnetic dipole moment, there is no reason to expect that it is correct to
use the free-nucleon magnetic moments in nuclei. (In fact, in the next chapter we
see that there is strong evidence to the contrary.) Unfortunately, a nucleon in a
deuteron lies somewhere between a free nucleon and a strongly bound nucleon in
a nucleus, and we have no firm clues about what values to take for the magnetic
moments. Spin-orbit interactions, relativistic effects, and meson exchanges may
have greater effects on p than the d-state admixture (but may cancel one
another’s effects). For the quadrupole moment, the poor knowledge of the d-state
wave function makes the deduced d-state admixture uncertain. (It would prob-
ably be more valid to regard the calculation of Q, using a known d-state mixture,
as a test of the d-state wave function.) Other experiments, particularly scattering
experiments using deuterons as targets, also give d-state admixtures in the range
of 4%. Thus our conclusions from the magnetic dipole and electric quadrupole
moments may be valid after all!

It is important that we have an accurate knowledge of the d-state wave
function because the mixing of ¢ values in the deuteron is the best evidence we
have for the noncentral (tensor) character of the nuclear force.
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4.2 NUCLEON-NUCLEON SCATTERING

Although the study of the deuteron gives us a number of clues about the
nucleon—nucleon interaction, the total amount of information available is limited.
Because there are no excited states, we can only study the dynamics of the
nucleon—nucleon interaction in the configuration of the deuteron: /= 0, parallel
spins, 2-fm separation. (Excited states, if they were present, might have different £
values or spin orientations.) To study the nucleon—nucleon interaction in differ-
ent configurations, we can perform nucleon—nucleon scattering experiments, in
which an incident beam of nucleons is scattered from a target of nucleons. If the
target is a nucleus with many nucleons, then there will be several target nucleons
within the range of the nuclear potential of the incident nucleon; in this case the
observed scattering of a single nucleon will include the complicated effects of
multiple encounters, making it very difficult to extract the properties of the
interaction between individual nucleons. We therefore select a target of hydrogen
so that incident particles can scatter from the individual protons. (It is still
possible to have multiple scattering, but in this case it must occur through
scattering first from one proton, then from another that is quite far from the first
on the scale of nuclear dimensions. If the probability for a single encounter is
small, the probability for multiple encounters will be negligible. This is very
different from the case of scattering from a heavier nucleus, in which each single
encounter with a target nucleus consists of many nucleon—nucleon interactions.)

Before we discuss the nuclear scattering problem, let’s look at an analogous
problem in optics, the diffraction of waves at a small slit or obstacle, as shown in
Figure 4.3. The diffraction pattern produced by an obstacle is very similar to that
produced by a slit of the same size. Nuclear scattering more resembles diffraction
by the obstacle, so we will concentrate our discussion on it. There are three
features of the optical diffraction that are analogous to the scattering of nucleons:

1. The incident wave is represented by a plane wave, while far from the obstacle
the scattered wave fronts are spherical. The total energy content of any
expanding spherical wave front cannot vary; thus its intensity (per unit area)
must decrease like =2 and its amplitude must decrease like » 1.

2. Along the surface of any spherical scattered wave front, the diffraction is
responsible for a variation in intensity of the radiation. The intensity thus
depends on angular coordinates 8 and ¢.

3. A radiation detector placed at any point far from the obstacle would record
both incident and scattered waves.

To solve the nucleon—nucleon scattering problem using quantum mechanics,
we will again assume that we can represent the interaction by a square-well
potential, as we did in the previous section for the deuteron. In fact, the only
difference between this calculation and that of the deuteron is that we are
concerned with free incident particles with E > 0. We will again simplify the
Schrodinger equation by assuming £= 0. The justification for this assumption
has nothing to do with that of the identical assumption made in the calculation
for the deuteron. Consider an incident nucleon striking a target nucleon just at its
surface; that is, the impact parameter (the perpendicular distance from the center
of the target nucleon to the line of flight of the incident nucleon) is of the order
of R =1 fm. If the incident particle has velocity v, its angular momentum
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Figure 4.3 Representation of scattering by (top) a small opening and (bottom) a
small obstacle. The shading of the wavefronts shows regions of large and small
intensity. On the right are shown photographs of diffraction by a circular opening
and an opaque circular disk. Source of photographs: M. Cagnet, M. Francon, and
J. C. Thrierr, Atlas of Optical Phenomena (Berlin: Springer-Verlag, 1962).

relative to the target is mvR. The relative angular momentum between the
nucleons must be quantized in units of #; that is, mvR = /h in semiclassical
notation. If mvR < h, then only /= 0 interactions are likely to occur. Thus
v < h/mR and the corresponding kinetic energy is estimated as

h? hc? (200 MeV - fm)’
T=1m’< = = > =20 MeV
2mR>  2mc’R*  2(1000 MeV)(1 fm)
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If the incident energy is far below 20 MeV, the /= 0 assumption is justified. We
will consider only low-energy scattering, for which the £= 0 assumption is valid.

The nucleon-nucleon scattering problem will be solved in the center-of-mass
coordinate system (see Appendix B). The mass appearing in the Schrodinger
equation is the reduced mass, which in this case is about half the nucleon mass.

The solution to the square-well problem for » < R is given by Equation 4.3; as
before, B = 0 in order that u(r)/r remain finite for » — 0. For r > R, the wave
function is

u(r) = C’sink,r + D’ cos k,r (4.12)
with k, = y2mE/h*. It is convenient to rewrite Equation 4.12 as
u(r) = Csin(k,r + 8) (4.13)
where
C’'=Ccosd and D’ = Csind (4.14)
The boundary conditions on u and du/dr at r = R give
Csin(k,R + 8) = Asin k,R (4.15)
and
k,Ccos(k,R + 8) = kyAcos k,R (4.16)
Dividing, '
' k,cot(k,R + 8) = ky cot kR (4.17)

Again, we have a transcendental equation to solve; given E (which we control
through the energy of the incident particle), ¥, and R, we can in principle solve
for 4.

Before we discuss the methods for extracting the parameter 8 from Equation
4.17, we examine how & enters the solution to the Schridinger equation. As
V, — 0 (in which case no scattering occurs), k; — k, and 8 — 0. This is just the
free particle solution. The effect of 1/, on the wave function is indicated in Figure
4.4. The wave function at » > R has the same form as the free particle, but it has
experienced a phase shift 8. The nodes (zeros) of the wave function are “pulled”
toward the origin by the attractive potential. (A repulsive potential would “push”
the nodes away from the origin and would give a negative phase shift.) We can
analyze the incident waves into components according to their angular momen-
tum relative to the target: £= 0 (which we have been considering so far), /=1,
and so on. Associated with each ¢ there will be a different solution to the
Schrédinger equation and a different phase shift §,.

Let us see how our square-well problem relates to more general scattering
theory. The incident wave is (as in the optical analogy) a plane wave traveling in
the z direction:

¢incidcnt = Ae[kz (418)

Let the target be located at the origin. Multiplyin“g by the time-dependent factor
gives

¥(z, 1) = deitkewn (4.19)

which always moves in the +z direction (toward the target for z < 0 and away
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Figure 4.4 The effect of a scattering potential is to shift the phase of the scattered
wave at points beyond the scattering regions, where the wave function is that of a free

particle.

from it for z > 0). It is mathematically easier to work with spherical waves e'*"/r
and e~ '*"/r, and multiplying with e ™'’ shows that e’*” gives an outgoing wave
and e ¥ gives an incoming wave. (A more rigorous treatment of scattering
theory, including terms with > 0, is given in Chapter 11.) For £= 0 we can take

A et‘kr e—ikr
\bincidem =S|\ (420)

r r

The minus sign between the two terms keeps ¢ finite for » — 0, and using the
coefficient A for both terms sets the amplitudes of the incoming and outgoing
waves to be equal. We assume that the scattering does not create or destroy
particles, and thus the scattering cannot change the amplitudes of the e’k or
e~ "% terms (since the squared amplitudes give the probabilities to detect incom-
ing or outgoing particles). All that can result from the scattering is a change in
phase of the outgoing wave:

A
T 2ik

Y(r (4.21)

eitkr+B) e ik
r r

where 8 is the change in phase.
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Manipulation of Equation 4.13 gives the relationship between B8 and §,:

C
Y(r) TSin(kr +6;)

C ei(kr+80) _ e—i(kr+80)

r 2i
C " ei(kr+280) e*ikr
= e - (4.22)
1 r r

Thus B = 28, and 4 = kCe .

To evaluate the probability for scattering, we need the amplitude of the
scattered wave. The wave function ¢ represents all waves in the region r > R,
and to find the amplitude of only the scattered wave we must subtract away the
incident amplitude:

lPscattered = ‘P - l!Jincident

i(em“ —~ 1)1” (4.23)
2ik r

The current of scattered particles per unit area can be found using Equation 2.12
extended to three dimensions:

Il

h (28w

atered = 5| VF S = Y (4.24)
hlA]2
= s 8, (4.25)
and the incident current is, in analogy with Equation 2.22
Jincident = hkl—Alz (4.26)
m

The scattered current is uniformly distributed over a sphere of radius r. An
element of area r2dQ on that sphere subtends a solid angle d = sinf df d¢ at
the scattering center; see Figure 4.5. The differential cross section do/dQ is the
probability per unit solid angle that an incident particle is scattered into the solid
angle d; the probability do that an incident particle is scattered into d2 is the
ratio of the scattered current through dQ to the incident current:

— (jscattered)(r2 dﬂ)

Jincident

do

(4.27)

Using Equations 4.25 and 4.26 for the scattered and incident currents, we obtain

do  sin’§,

— = 4.28

dQ k? (4.28)

The total cross section o is the total probability to be scattered in any direction:
do

0= | —=dQ (4.29)
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Figure 4.5 The basic geometry of scattering.

In general, do/d$) varies with direction over the surface of the sphere; in the
special case of £= 0 scattering, do/d{ is constant and comes out of the integral:
4 do

MY
47 sin’ §,

= (4.30)
Thus the ¢= 0 phase shift is directly related to the probability for scattering to
occur. That is, we can evaluate 8, from our simple square-well model, Equation
417, find the total cross section from Equation 4.30, and compare with the

experimental cross section.
We now return to the analysis of Equation 4.17. Let us assume the incident
energy is small, say E < 10 keV. Then k, = \/Zm(VO + E)/h* = 0.92 fm™!, with
=35 MeV from our analysis of the deuteron bound state, and k,
= {2mE/h* < 0.016 fm™~'. If we let the right side of Equation 4.17 equal —a,

a = —k cot k,R (4.31)

then a bit of trigonometric manipulation gives

cos k,R + (a/k,)sin k,R

sin 8, = 4,32
% 1+ a2/k2 (4.32)
and so
4q a
= m cosk,R + k—251n k,R (433)

Using R = 2 fm from the study of the ?H bound state gives a = 0.2 fm~'. Thus
k? < a® and k,R < 1, giving

H

K

o=—(1+aR)=46Db (4.34)
o
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Figure 4.6 The neutron-proton scattering cross section at low energy. Data
taken from a review by R. K. Adair, Rev. Mod. Phys. 22, 249 (1950), with additional
recent results from T. L. Houk, Phys. Rev. C 3, 1886 (1970).

where 1 barn (b) = 1072 m? This result suggests that the cross section should be
constant at low energy and should have a value close to 4-5 b.

Figure 4.6 shows the experimental cross sections for scattering of neutrons by
protons. The cross section is indeed constant at low energy, and it decreases with
E at large energy as Equation 4.33 predicts, but the low-energy cross section, 20.4
b, is not in agreement with our calculated value of 4-5 b.

For the solution to this discrepancy, we must study the relative spins of the
incident and scattered nucleons. The proton and neutron spins (each 1) can
combine to give a total spin § = s, + s, that can have magnitude either 0 or 1.
The S = 1 combination has three orientations (corresponding to z components
+1,0, —1) and the S = 0 combination has only a single orientation. For that
reason, the S = 1 combination is called a triplet state and the S = 0 combination
is called a singler state. Of the four possible relative spin orientations, three are
associated with the triplet state and one with the singlet state. As the incident
nucleon approaches the target, the probability of being in a triplet state is 3 /4
and the probability of being in a singlet state is 1/4. If the scattering cross
section is different for the singlet and triplet states, then

o= 30, + o, (4.35)

where o, and o, are the cross sections for scattering in the triplet and singlet
states, respectively. In estimating the cross section in Equation 4.34, we used
parameters obtained from the deuteron, which is in a S = 1 state. We therefore
take o, = 4.6 b and using the measured value of ¢ = 20.4 b for the low-energy
cross section, we deduce

o, = 67.8b

This calculation indicates that there is an enormous difference between the cross
sections in the singlet and triplet states—that is, the nuclear force must be spin
dependent. #

Even from our investigation of the deuteron, we should have concluded that
the force is spin dependent. If the neutron-proton force did not depend on the
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relative direction of the spins, then we would expect to find deuteron bound
states with S = 0 and S = 1 at essentially the same energy. Because we find no
S = 0 bound state, we conclude that the force must be spin dependent.

We can verify our conclusions about the singlet and triplet cross sections in a
variety of ways. One method is to scatter very low energy neutrons from
hydrogen molecules. Molecular hydrogen has two forms, known as orthohydro-
gen and parahydrogen. In orthohydrogen the two proton spins are parallel, while
in parahydrogen they are antiparallel. The difference between the neutron scatter-
ing cross sections of ortho- and parahydrogen is evidence of the spin-dependent
part of the nucleon—nucleon force.

Our discussion of the cross section for neutron—proton scattering is inadequate
for analysis of scattering of neutrons from H, molecules. Very low energy
neutrons (E < 0.01 eV) have a de Broglie wavelength larger than 0.05 nm, thus
greater than the separation of the two protons in H,. The uncertainty principle
requires that the size of the wave packet that describes a particle be no smaller
than its de Broglie wavelength. Thus the wave packet of the incident neutron
overlaps simultaneously with both protons in H,, even though the range of the
nuclear force of the individual neutron—proton interactions remains of the order
of 1 fm. The scattered neutron waves ¥, and ¢, from the two protons will
therefore combine coherently; that is, they will interfere, and the cross section
depends on |, + ¥,|?, not |¢,]* + |¢,|% We cannot therefore simply add the
cross sections from the two individual scatterings. (At higher energy, where the
de Broglie wavelength would be small compared with the separation of
the protons, the scattered waves would not interfere and we could indeed add the
cross sections directly. The reason for choosing to work at very low energy is
partly to observe the interference effect and partly to prevent the neutron from
transferring enough energy to the H, molecule to start it rotating, which would
complicate the analysis. The minimum rotational energy is about 0.015 eV, and
so neutrons with energies in the range of 0.01 eV do not excite rotational states of
the molecule.)

To analyze the interference effect in problems of this sort, we introduce the
scattering length a, defined such that the low-energy cross section is equal to
dma’:

lim 6 = 47a’ (4.36)
k—0
Comparison with Equation 4.30 shows that
_ sing,
a= =+ lim (4.37)
k—0

The choice of sign is arbitrary, but it is conventional to choose the minus sign.

Even though the scattering length has the dimension of length, it is a parameter

that represents the strength of the scattering, not its range. To see this, we note

from Equation 4.37 that 8, must approach 0 at low energy in order that a remain

finite. Equation 4.23 for the scattered wave function can be written for small &,
as

80 eikr eikr
llbscattered =4 ‘; — = —Aa— (438)
r r

Thus a gives in effect the amplitude of the scattered wave.
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Figure 4.7 (a) Wave function for triplet np scattering for a laboratory neutron
energy of ~ 200 keV and a well radius of 2.1 fm. Note the positive scattering
length. (b) Wave function exhibiting a negative scattering length. This happens to
be the case for singlet np scattering.

The sign of the scattering length also carries physical information. Figure 4.7
shows representations of the triplet and singlet scattered wave functions u(7). At
low energy we can write a = —§,/k and the scattered wave function, Equation
4.13, becomes

u(r) = Csink,(r — a) (4.39)

The value of a is given by the point at which u(r) passes through zero. The
triplet wave function for » < R looks just like the bound state wave function for
the deuteron: u(r) “turns over” for r < R to form the bound state. The value of
a, is therefore positive. Because there is no singlet bound state, u(r) does not
“turn over” for r < R, so it reaches the boundary at r = R with positive slope.
When we make the smooth connection at » = R to the wave function beyond the
potential and extrapolate to u(r) =0, we find that a,, the singlet scattering
length, is negative.

Our estimate 6, = 4.6 b from the properties of the deuteron leads to a, = +6.1
fm, and the estimate of o, = 67.8 b needed to reproduce the observed total cross
section gives a, = —23.2 fm.

The theory of neutron scattering from ortho- and parahydrogen gives

57(3a, + a,)’ (4.40)

Opara

Oortho — 0pam + 129(at - as)2 (441)

where the numerical coefficients depend on the speed of the incident neutron.
Equations 4.40 and 4.41 are written for neutrons of about 770 m/s, slower even
than “thermal” neutrons (2200 m/s). The measured cross sections, corrected for
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absorption, for neutrons of this speed are o,,,, = 3.2 +£ 0.2 b and o,,,, = 108 +
1 b. If the nuclear force were independent of spin, we would have ¢, = o, and
a, = ag thus o ., and o,,,, would be the same. The great difference between the
measured values shows that a, # a, and it also suggests that a, and a, must
have different signs, so that —3a, = a, in order to make o, small. Solving

para
Equations 4.40 and 4.41 for a, and a, gives

a,= —23.55+0.12fm

S

a,= +5.35 £ 0.06 fm

consistent with the values deduced previously from ¢, and o,. A description of
these experiments can be found in G. L. Squires and A. T. Stewart, Proc. Roy.
Soc. (London) A230, 19 (1955).

There are several other experiments that are sensitive to the singlet and triplet
scattering lengths; these include neutron diffraction by crystals that contain
hydrogen (such as hydrides) as well as the total reflection of neutron beams at
small angles from hydrogen-rich materials (such as hydrocarbons). These tech-
niques give results in good agreement with the above values for a, and a,.

The theory we have outlined is valid only for £= 0 scattering of low-energy
incident particles. The £= 0 restriction required particles of incident energies
below 20 MeV, while our other low-energy approximations required eV or keV
energies. As we increase the energy of the incident particle, we will violate
Equation 4.36 long before we reach energies of 20 MeV. We therefore still have
¢= 0 scattering, but at these energies (of order 1 MeV) equations such as 4.38 are
not valid. This case is generally treated in the effective range approximation, in
which we take

1 1
kcotd,=— + Erok2 + - (4.42)
a

and where terms in higher powers of k are neglected. The quantity a is the
zero-energy scattering length we already defined (and, in fact, this reduces to
Equation 4.37 in the k& — 0 limit), and the quantity 7, is a new parameter, the
effective range. One of the advantages of this representation is that a and r,
characterize the nuclear potential independent of its shape; that is, we could
repeat all of the calculations done in this section with a potential other than the
square well, and we would deduce identical values of a and 7, from analyzing the
experimental cross sections. Of course there is an accompanying disadvantage in
that we can learn little about the shape of the nuclear potential from an analysis
in which calculations with different potentials give identical results!

Like the scattering lengths, the effective range is different for singlet and triplet
states. From a variety of scattering experiments we can deduce the best set of
¢ = 0 parameters for the neutron—proton interaction:

a,=—23715+ 0015fm g, =5.423 + 0.005 fm
o= 273 +003fm £, =1.748 + 0.006 fm

S

As a final comment regarding the singlet and triplet neutron—proton interac-
tions, we can try to estimate the energy of the singlet n-p state relative to the
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bound triplet state at —2.22 MeV. Using Equations 4.34, 4.31, and 4.5 we would
deduce that the energy of the singlet state is about +77 keV. Thus the singlet
state is only slightly unbound.

4.3 PROTON-PROTON AND NEUTRON - NEUTRON
INTERACTIONS

There is one very important difference between the scattering of identical
nucleons (proton—proton and neutron-neutron scattering) and the scattering of
different nucleons (neutron-proton scattering). This difference comes about
because the identical projectile and target nucleons must be described by a
common wave function, as discussed in Section 2.7. Because nucleons have spin
7, their wave functions must be antisymmetric with respect to interchange of the
nucleons. If we again consider only low-energy scattering, so that /= 0, inter-
changing the spatial coordinates of the two particles gives no change in sign.
(This situation is somewhat analogous to the parity operation described in
Section 2.6.) Thus the wave function is symmetric with respect to interchange of
spatial coordinates and must therefore be antisymmetric with respect to inter-
change of spin coordinates in order that the total (spatial times spin) wave
function be antisymmetric. The antisymmetric spin wave function is of the form
of Equation 2.76 and must correspond to a total combined spin of 0; that is, the
spin orientations must be different. Only singlet spin states can thus contribute to
the scattering. (At higher energies, the antisymmetric /= 1 spatial states can
occur, accompanied by only the symmetric triplet spin states.)

The derivation of the differential cross section relies on another feature of
quantum physics. Consider Figure 4.8, which represents the scattering of two
identical particles in the center of mass reference frame. Since the particles are

!

~_ “

T-6

Figure 4.8 Scattering of identical particles in the center-of-mass system. One
particle emerges at the angle 8§ and the other at # — 0; because the particles are
identical, there is no way to tell which particle emerges at which angle, and
therefore we cannot distinguish the two cases shown.
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idéntical, there is no experimental way to distinguish the two situations in the
figure. The scattered wave function must therefore include contributions for
scattering at # and at # — 6. When we square the scattered wave function to
calculate the cross section, there will be a term proportional to the interference
between the parts of the wave function that give scattering at § and at 7 — 6.
This interference is a purely quantum effect that has no classical analog.

Let’s first consider scattering between two protons; the wave function must
describe both Coulomb and nuclear scattering, and there will be an additional
Coulomb-nuclear interference term in the cross section. (The scattered wave
function must include one term resulting from Coulomb scattering and another
resulting from nuclear scattering; the Coulomb term must vanish in the limit
e — 0, and the nuclear term must vanish as the nuclear potential vanishes, in
which case §, — 0. When we square the wave function to find the cross section,
we get a term that includes both the Coulomb and nuclear scattering.) The
derivation of the cross section is beyond the level of this text; for discussions of
its derivation and of early work on proton-proton scattering, see J. D. Jackson
and J. M. Blatt, Rev. Mod. Phys. 22, 77 (1950). The differential cross section is

do [ e? 2 1 1 cos[n Intan®(8,2)]
dQ |\ 4me, | 4T?)sin*(6/2) * cos*(6/2)  sin?(8,2) cos2(6,2)
2 5 cos[8, + nlnsin®(8,/2)]  cos[8, + nIncos?(8,2)]
=, (sind) sin(6,2) c0s?(6,2)
4
+ Fsin2 80} (4.43)

Here T is the laboratory kinetic energy of the incident proton (assuming the
target proton to be at rest), § is the scattering angle in the center-of-mass system,
8, the £= 0 phase shift for pure nuclear scattering, and 0 = (e*/4me hc)B~ ! =
a/B, where a is the fine-structure constant (with a value of nearly i-) and
B = v/c is the (dimensionless) relative velocity of the protons. The six terms in
brackets in Equation 4.43 can be readily identified: (1) The sin~*(6/2) is
characteristic of Coulomb scattering, also known as Rutherford scattering. We
discuss this further in Chapter 11. (2) Since the two protons are identical, we
cannot tell the case in which the incident proton comes out at § and the target
proton at « — # (in the center-of-mass system) from the case in which the
incident proton comes out at «# — § and the target proton at #. Thus the
scattering cross section must include a characteristic Coulomb (Rutherford) term
sin~*(7 — 0)/2 = cos*(8,/2). (3) This term describes the interference between
Coulomb scattering at # and at # — 6. (4 and 5) These two terms result from the
interference between Coulomb and nuclear scattering. (6) The last term is the
pure nuclear scattering term. In the limit e — 0 (pure nuclear scattering), only
this term survives and Equation 4.43 reduces to Equation 4.28, as it should.
Although it may be complicated in practice, the procedure for studying the
proton—proton interaction is simple in concept: since 8, is the only unknown in
Equation 4.43, we can measure the differential scattering cross section as a
function of angle (for a specific incident kinetic energy) and extract 8, from the
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Figure 4.9 The cross section for low-energy proton-proton scattering at an
incident proton energy of 3.037 MeV. Fitting the data points to Equation 4.43 gives
the s-wave phase shift §, = 50.966°. The cross section for pure nuclear scattering
would be 0.165 b; the observation of values of the cross section smaller than the
pure nuclear value is evidence of the interference between the Coulomb and
nuclear parts of the wave function. Data from D. J. Knecht et al., Phys. Rev. 148,
1031 (1966).

best fit of the results to Equation 4.43. Figure 4.9 shows an example of such data,
from which it is deduced that §, = 50.966° at T = 3.037 MeV. From many such
experiments we can observe the dependence of §, on energy, as shown in Figure
4.10.

The next step in the interpretation of these data is to represent the scattering in
terms of energy-independent quantities such as the scattering length and effective
range, as we did in Equation 4.42. Unfortunately, this cannot easily be done
because the Coulomb interaction has infinite range and even in the k& — 0 limit
we cannot neglect the higher-order terms of Equation 4.42. With certain modifi-
cations, however, it is possible to obtain an expression incorporating the effects
of Coulomb and nuclear scattering in a form similar to Equation 4.42 and thus to
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Figure 4.10 The s-wave phase shift for pp scattering as deduced from the
experimental results of several workers.
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obtain values for the proton—proton scattering length and effective range:

a= —782+0.01 fm
2.79 + 0.02 fm

Iy

The effective range is entirely consistent with the singlet np values deduced in the
previous section. The scattering length, which measures the strength of the
interaction, includes Coulomb as well as nuclear effects and thus cannot be
compared directly with the corresponding np value. (It is, however, important to
note that a is negative, suggesting that there is no pp bound state; that is, the
nucleus *He does not exist.) The comparison of the pp and np scattering lengths
will be discussed further in the next section.

The study of neutron—neutron scattering should be free of the effects of the
Coulomb interaction that made the analysis of proton-proton scattering so
complicated. Here the difficulty is an experimental one—although beams of
neutrons are readily available, targets of free neutrons are not. Measurement of
neutron—neutron scattering parameters therefore requires that we use a nuclear
reaction to create two neutrons in relative motion within the range of each other’s
nuclear force. As the two neutrons separate, we have in effect a scattering
experiment. Unfortunately, such reactions must also create a third particle, which
will have interactions with both of the neutrons (individually and collectively),
but the necessary corrections can be calculated with sufficient precision to enable
values to be extracted for the neutron—neutron scattering length and effective
range. The experiments that have been reported include the breakup of a
deuteron following capture of a negative 7 meson (7~ +2H — 2n + y) and
following neutron scattering (n +2H — 2n + p). It is also possible to deduce the
nn parameters from comparison of mirror reactions such as *He +?H — 3H + 2p
and *H +2H — *He + 2n, using known pp parameters as an aid in calculating
the final-state effects of the three particles. The analysis of these (and other)
experiments gives the neutron-neutron parameters

a= —166 + 0.5 fm
2.66 + 0.15 fm

o

As with the proton-proton interaction, the negative scattering length shows
that the two neutrons do not form a stable bound state. (It is tempting, but
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incorrect, to explain the nonexistence of the di-proton as arising from Coulomb
repulsion. No such temptation exists for the di-neutron, the nonexistence of
which must arise from the spin dependence of the nuclear interaction. Reviewing
the evidence, we first learned that the deuteron ground state is a spin triplet and
that no bound spin singlet state exists. We then argued that, because identical
fermions must have total antisymmetric wave functions and because the lowest
state is expected to be a spatially symmetric /= 0 state, the di-proton and
di-neutron systems must have antisymmetric, or singlet, spin states which are
unbound.)

4.4 PROPERTIES OF THE NUCLEAR FORCE

Based on the low-energy properties described in the previous sections, we can
learn many details about the nuclear force. When we include results from higher
energy experiments, still more details emerge. In this section we summarize the
main features of the internucleon force and in the next section we discuss a
particular representation for the force that reproduces many of these details.

The Interaction between Two Nucleons Consists to Lowest Order
of an Attractive Central Potential

In this chapter we have used for this potential a square-well form, which
simplifies the calculations and reproduces the observed data fairly well. Other
more realistic forms could just as well have been chosen, but the essential
conclusions would not change (in fact, the effective range approximation is
virtually independent of the shape assumed for the potential). The common
characteristic of these potentials is that they depend only on the internucleon
distance r. We therefore represent this central term as V_(r). The experimental
program to study V_(r) would be to measure the energy dependence of
nucleon—nucleon parameters such as scattering phase shifts, and then to try to
choose the form for V_(r) that best reproduces those parameters.

The Nucleon - Nucleon Interaction is Strongly Spin Dependent

This observation follows from the failure to observe a singlet bound state of the
deuteron and also from the measured differences between the singlet and triplet
cross sections. What is the form of an additional term that must be added to the
potential to account for this effect? Obviously the term must depend on the spins
of the two nucleons, s, and s,, but not all possible combinations of s, and s, are
permitted. The nuclear force must satisfy certain symmetries, which restrict the
possible forms that the potential could have. Examples of these symmetries are
parity (r = —r) and time reversal (t > —1t). Experiments indicate that, to a high
degree of precision (one part in 107 for parity and one part in 103 for time
reversal), the internucleon potential is invariant with respect to these operations.
Under the parity operator, which involves spatial reflection, angular momentum
vectors are unchanged. This statement may seem somewhat surprising, because
upon inverting a coordinate system we would naturally expect all vectors defined
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in that coordinate system to invert. However, angular momentum is not a true or
polar vector; it is a pseudo- or axial vector that does not invert when r > —r.
This follows directly from the definition » X p or can be inferred from a diagram
of a spinning object. Under the time-reversal operation, all motions (including
linear and angular momentum) are reversed. Thus terms such as s, or s, or a
linear combination A4s, + Bs, in the potential would violate time-reversal invari-
ance and cannot be part of the nuclear potential; terms such as s, sZ, or s, * s,
are invariant with respect to time reversal and are therefore allowed. (All of these
terms are also invariant with respect to parity.) The simplest term involving both
nucleon spins is s, * s,. Let’s consider the value of s, * 5, for singlet and triplet
states. To do this we evaluate the total spin § =5, + s,

S?=88S=(s,+s5,) (s, +5,)
=st+si+ 255,
Thus
5108, = 3(82— s —s3) (4.44)

To evaluate this expression, we must remember that in quantum mechanics all
squared angular momenta evaluate as s = A%s(s + 1); see Section 2.5 and
Equation 2.69.

(spv8,) = H[S(S+1) = 5,(s, + 1) = s5,(s5, + 1)] B2 (4.45)

With nucleon spins s, and s, of 3, the value of s, * s, is, for triplet (§ = 1)
states:

(sies) =310+ 1) = 3G +1) - 3G + )2 = 10> (4.46)
and for singlet (S = 0) states:
(o) =400+ ) — 41+ 1) — 4(E+ )] = =302 (447)

Thus a spin-dependent expression of the form s, « s,V,(r) can be included in the
potential and will have the effect of giving different calculated cross sections for
singlet and triplet states. The magnitude of ¥ can be adjusted to give the correct
differences between the singlet and triplet cross sections and the radial depen-
dence can be adjusted to give the proper dependence on energy.
We could also write the potential including ¥V, and ¥ as
5,08, 5108,

V() = -2 - ) +( R SO T
where V(r) and V,